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Face perception is a highly developed skill in humans owing to 
its unique evolutionary and social importance. From a brief 
glance at a face, we are able to effortlessly glean information 

about a person’s age, gender, identity, social group, emotional 
state, attentional focus and several other characteristics such as 
trustworthiness1.

Early studies on patients with focal brain lesions revealed that 
portions of the inferior temporal cortex in the right hemisphere 
might be critical for face processing, as damage to this region 
often resulted in the clinical syndrome of prosopagnosia1. Lesion 
work gave way to single-unit recording and functional magnetic 
resonance imaging (fMRI) studies that documented a distrib-
uted set of specialized face patches2–4. Many of these patches run 
along the ventral visual stream to the temporal pole, with more 
posterior regions processing fundamental aspects of faces (for 
example, the occipital face area (OFA) analyses facial parts and 
the fusiform face area (FFA) engages in more holistic process-
ing of the face)1,5–7, whereas more anterior regions, such as the 
anterior temporal lobe (ATL) and amygdala (AMG), link faces 
to conceptual knowledge and affective states8–11. Other regions 
that appear to have a role in face processing include the posterior 
superior temporal sulcus (STS), which is involved in processing 
facial movements5,12; the posterior cingulate cortex (PCC), which 
is potentially involved in episodic memory related to faces6; the 
inferior frontal gyrus (IFG), which mediates emotion and gaze 
perception13,14; and the orbitofrontal cortex (OFC), which is 
thought to evaluate socially rewarding aspects of faces such as 
their attractiveness and trustworthiness15–19.

How these regions are interconnected and how they functionally 
interact to give rise to the detailed perceptual, social, affective and 
mnemonic abilities that constitute face processing is poorly under-
stood. One highly influential model of face processing—the Haxby 
model5,6,20—postulates a serial-hierarchical structure in which 
information flows from face patch to face patch in an orderly man-
ner, from posterior brain regions to anterior regions (for example, 
the OFA to FFA; OFA to STS). Furthermore, this model claims that 

there is a unique face processing core system—the OFA, FFA and 
STS—that performs the most important aspects of face process-
ing while the extended system—the ATL, AMG and PCC—gleans 
other information from faces. More recent models have extended 
the Haxby model by suggesting that there are two face processing 
streams—a dorsal stream and a ventral stream—and that there is 
some reciprocal processing within each stream1,7,21.

Initial research into how face-sensitive regions are intercon-
nected has primarily implicated portions of a large white matter 
tract that runs along the ventral visual stream, the inferior longi-
tudinal fasciculus (ILF) in face processing22. However, these stud-
ies were limited because they relied on small sample sizes and they 
examined partial connectomes; links to behavioural performance 
are often lacking and they did not investigate structural connectivity 
(SC) and functional connectivity (FC) or effective connectivity (EC) 
together23–26. It remains unclear how the full set of face-sensitive 
regions is anatomically interconnected, how they functionally inter-
act with each other across tasks and contexts and how network-level 
characteristics relate to behaviour.

Here we tested predictions of prominent neurocognitive mod-
els of face processing1,5,6,20 as well as asking several new questions 
derived from anatomy studies about the role of short-range versus 
long-range white matter, and tested an older idea about the possible 
genesis of hemispheric asymmetries in face processing. We used the 
human connectome project (HCP)27 dataset because it provides a 
large population of individuals and high quality multimodal neu-
roimaging data. We functionally defined nine face-sensitive regions 
in each individual, then used tractography to delineate local, long-
range and cross-hemisphere white matter connections. We also 
investigated functional and dynamical properties of this network 
using paired resting-state and task-state functional datasets, and 
we explored the anatomy–function relationship by studying the 
correspondence between anatomical and functional connectomes. 
Finally, we used HCP behavioural tests to examine whether indi-
vidual differences in certain face skills (such as facial emotion rec-
ognition) can be explained by any connectome characteristics.
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Results
Anatomical connectome. Diffusion MRI (dMRI) combined with 
tractography is, at present, the only in vivo method that can be used 
to delineate the fibre tracts between brain regions. Tractography 
obtains diffusion measurements as input and produces the con-
nectome, which is a collection of white matter fascicles, as output28. 
Tractography is not without its limitations29,30, but several examples 
to date have demonstrated that the results of tractography correlate 
well with the results from histology31–33. Using five independent but 
complementary tractography analyses, we obtained a detailed and 
comprehensive picture of the face network structural connectome.

First, we mapped the global connectivity pattern for each face 
region of interest (ROI). Axonal projections determine where a 
region receives information from and where it can exert effects. 
Although the major cortical projections of each face ROI were its 
neighbouring areas, they exhibited idiosyncratic distant projections 
(Supplementary Fig. 1). Posterior areas (OFA and FFA) had large 
projections to the temporal pole along the ventral temporal cor-
tex. By contrast, the STS had prominent projections in and around 
the IFG, and vice versa. Medial ROIs (AMG, OFC and PCC) had 
projections only to medial structures. Furthermore, most face 
ROIs seemed to have direct fibre projections from the early visual  
cortex (EVC).

The global connectivity patterns also implied that each region 
might have differential cross-hemispheric projections to its coun-
terpart in the other hemisphere (different corpus callosum projec-
tions from each face ROI are provided in Supplementary Fig. 1). 
To further examine this, we reconstructed interhemispheric con-
nections for each pair of bilateral ROIs (for example, Left FFA with 
right FFA). The results confirmed our speculation by showing that 
bilateral face ROIs were mainly connected through four different 
midline structures (Extended Data Fig. 1)—the rostrum (OFC), the 
genu (IFG) and the splenium (OFA, FFA, STS, PCC and ATL) of 
the corpus callosum, and the anterior commissure (AMG and ATL).

We next delineated inter-regional connections between face 
areas within the same hemisphere. Anatomical connection strength 
is often interpreted as a measure of capacity for information flow 
and provides insights about key pathways through which neural 
signals propagate within the network34. Here we reconstructed 36 
pairwise connections between nine face ROIs in each hemisphere 
and extracted their microstructural properties (such as connectiv-
ity probability and streamline counts) to estimate SC. The land-
scape of the connectivity probability map (Fig. 1a) indicated that 
there were three core pathways in the face network: a ventral path-
way (EVC–OFA–FFA–ATL–AMG), a medial pathway (AMG–
OFC–PCC) and a dorsal pathway (STS–IFG). A similar pattern was 
also found in the streamline count map (Supplementary Fig. 2). To 
further validate this partition of three core pathways, we examined 
another established graph theoretic measure, the communicabil-
ity, between each ROI pair35. In contrast to the connection weight 
between a pair of regions (which only measures the direct path), 
communicability quantifies the ease of communication through all 
of the possible paths between regions by taking into consideration 
both direct and indirect connections. Communicability therefore 
encodes additional useful information about the global organiza-
tion of a network that mediates inter-regional communication and 
has been widely used to determine anatomical communities36. Here 
the community detection analysis on the communicability graph 
confirmed the existence of three separate communities in the face 
network and they corresponded well with the partitions of three 
core pathways (Fig. 1b).

How are these core pathways formed? One possibility is that they 
are constructed from large white matter bundles such as major fas-
ciculi. Indeed, a small number of long-range tracts has been repeat-
edly reported in the face-perception literature and disruption of 
these tracts can lead to prosopagnosia22. Here we used an automatic 

fibre reconstruction technique37 to delineate ten major fasciculi for 
each individual and compared them with the ROI–ROI tracts at the 
individual level. By calculating the degree of their overlapped tra-
jectories, we estimated the involvement of major fasciculi in the face 
connectome. The results revealed that the three core pathways were 
mainly supported by six major fasciculi, but to a much lesser degree 
than we expected (Fig. 2). Specifically, less than 30% of the ven-
tral pathway was mediated by the ILF (28.79 ± 8.11% (mean ± s.d.)) 
and inferior fronto-occipital fasciculus (IFOF, 20.76 ± 12.27%); only 
around 12% of the medial pathway overlapped with the cingulum 
(CING, 15.03 ± 10.24%) and uncinate fasciculus (UF, 8.96 ± 6.58%); 
less than 30% of the dorsal pathway was found to be merged with 
the arcuate fasciculus (AF, 29.05 ± 9.15%) and superior longitudinal 
fasciculus (SLF, 25.01 ± 7.46%).

As only a small proportion of the anatomical connectome was 
contributed by major fasciculi, we directed our attention to another 
important class of white matter—short-range or U-shaped fibres. 
Tracer studies have demonstrated that long-range fasciculi com-
prise only a minority of the whole brain connectome; the major-
ity of the brain connectome consists of short association fibres 
that lie immediately beneath the grey matter, connecting adjacent 
gyri38–40. By projecting all 72 ROI–ROI connections over two stan-
dard white matter atlases of long-range41 and short-range fibres42,43, 
we examined the relative contribution of the two white matter sys-
tems for the face connectome (Fig. 2). Although more than 57.0% 
of the ROI–ROI connections can be classified as short-range fibres, 
only 34.3% of the connectome can be labelled by the tracts in the 
long-range white matter atlas. We also found a positive relationship 
between the spatial distance of two ROIs and the contribution of 
long-range fibres (Pearson’s r72 = 0.314, P = 0.007, 95% confidence 
interval (CI) = 0.088–0.540), suggesting that greater separation 
between two face ROIs (for example, EVC–OFA versus EVC–OFC) 
is associated with increased involvement of long-range fibres in 
constructing their connections (for example, 4% versus 45%).

Functional connectome. The anatomical connectome strictly 
allows some neuronal populations to directly interact while exclud-
ing most others. By contrast, the functional connectome is inher-
ently dynamic and context dependent44. We mapped three different 
classes of functional brain connectivity to reveal the manner in 
which face ROIs interact; coactivation patterns were identified dur-
ing rest (resting-state FC (rsFC)) or during the face localizer task 
(task-state FC (taskFC)), and EC was modelled using psychophysi-
ological interaction (PPI) and dynamic causal modelling (DCM) to 
reveal directional information flow driven by the face stimuli45–47.

We found that the results from the rsFC and taskFC analysis were 
highly correlated (mean r = 0.518, t666 = 80.97, P < 0.001, Cohen’s 
d = 4.43, 95% CI = 0.505–0.531; Fig. 3f), consistent with recent find-
ings from the connectome at large48,49. Both showed strong coacti-
vations among six face ROIs (EVC, OFA, FFA, STS, IFG and PCC;  
Fig. 3c,d). This suggests that an intrinsic functional subnetwork exists 
within the face system that is constantly active and synchronized 
across contexts44,48,50. However, FC only expresses statistical depen-
dencies (correlations) among time courses that do not generally 
represent direct neuronal signalling34. By contrast, EC has been pro-
posed as a more powerful route to capture stimulus-driven patterns 
of directional influence among neural areas51. Here we implemented 
PPI to explore network-level dynamics evoked by face stimuli and 
then used DCM for confirmatory analyses. PPI analyses build simple 
static models of coupling between one or more brain regions and 
enable researchers to explore directed changes in connectivity by 
establishing a significant interaction between the seed region and the 
psychological context51–53, whereas DCM is a framework for testing 
alternative hypotheses/models of neural dynamics, fitting them to 
data and comparing their evidence using Bayesian model compari-
son47,54. Our PPI analyses revealed that face-sensitive brain dynamics 
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primarily occurred to the same functional subnetwork (Fig. 3e) but 
with entirely different patterns between the two hemispheres (Fig. 4).  
Although information processing within the left hemisphere was 
organized in a purely feedforward manner (that is, the information 
cascade unfolded from posterior to anterior ROIs), the right hemi-
sphere exhibited a predominantly recurrent architecture (that is, 
reciprocal connections). For example, multiple bidirectional effec-
tive connections were observed among right core face areas (EVC, 
OFA, FFA and STS; Fig. 4), suggesting the coexistence of bottom-up 
and top-down interactions and computations during face viewing. 
Critically, this differential pattern across the two hemispheres was 
supported by subsequent DCM analyses (Fig. 4b). Results from the 
Bayesian model comparison suggest that the feedforward process-
ing model fits best with the data observed in the left hemisphere, 
whereas the recurrent processing model fits best for data in the right 
hemisphere. For Bayesian model selection (BMS) fixed-effects and 
random-effects analysis, the feedforward model exhibited higher 
group log-evidence (619.04 versus 1.12) and exceedance probability 

(99.83% versus 0.17%) than the recurrent model in the left hemi-
sphere, whereas the recurrent model exhibited higher group log-evi-
dence (65.39 versus 0.84) and exceedance probability (91.21% versus 
8.79%) than the feedforward model in the right hemisphere. An 
analysis of absolute model fit suggests that the feedforward model 
can explain 16 ± 8% (mean ± s.d.) of the observed variance in the 
left hemisphere and the recurrent model accounts for 18 ± 9% of 
the observed variance in the right hemisphere. An additional DCM 
analysis with larger model space was also performed to revalidate 
this differential pattern of face-evoked information processing across 
two hemispheres (Extended Data Fig. 2).

Spatial specificity of the face connectome. It is important to con-
sider whether the brain connectivity patterns that we observed 
demonstrate spatial specificity (Fig. 5). On the basis of individual-
specific ROIs defined by the face localizer, we discovered three dis-
tinct pathways in the anatomical connectome and six synchronized 
areas in the functional connectome (Fig. 3). To further explore how 
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these connectivity organizations are spread and changed in space, 
we performed analogous tractography and connectivity analy-
ses while using two other methods to select the locations of ROIs. 
When we shuffled individual-specific ROIs across individuals (so 
that the OFA coordinates of individual A became the OFA coordi-
nates of individual B), we found that the shuffled maps remained 
almost the same as the original ones for SC (r36 = 0.995, P < 0.001, 
95% CI = 0.961–1.029), rsFC (r36 = 0.991, P < 0.001, 95% CI = 0.944–
1.038) and taskFC (r36 = 0.987, P < 0.001, 95% CI = 0.930–1.043), 
but the EC pattern was substantially altered after this permutation 
manipulation (that is, the shuffled and original EC maps were no 
longer correlated; r72 = −0.091, P = 0.445, 95% CI = −0.329–0.146; 
Jeffreys–Zellner–Siow Bayes factor (BF10) = 0.124; Fig. 5, middle 
row). When we moved each ROI farther away from its putative 
range (for example, 20 mm apart from its original coordinates), 
we found that the topologies of all brain connectivity were com-
pletely changed (that is, the 20 mm shifting maps were no longer 
correlated with original ones; for SC: r36 = 0.231, P = 0.175, 95% 
CI = −0.108–0.570, BF10 = 0.323; for rsFC: r36 = 0.241, P = 0.156, 95% 
CI = −0.097–0.579, BF10 = 0.351; for taskFC: r36 = 0.113, P = 0.510, 

95% CI = −0.233–0.460; BF10 = 0.161; for EC: r72 = −0.191, P = 0.109, 
95% CI = −0.425–0.043; BF10 = 0.334; Fig. 5, bottom row). These 
findings suggest that the intrinsic architectures of the face network 
(that is, SC, rsFC and taskFC) might follow a more global pattern 
that is configured as relatively stable across small spatial extent (for 
example, <15 mm), and face-sensitive voxels and nearby non-face-
sensitive voxels share similar fibre tracts and, therefore, exhibit 
resembled neural signal propagations. By contrast, the dynamic fea-
tures of the face connectome (that is, EC pattern) seem to be highly 
determined by the voxel-level face selectivity.

Individual variance of the face connectome. It is also impor-
tant to consider the similarity of face-network organization 
across individuals. As Fig. 3 shows only group-averaged brain 
connectivity maps, we would like to validate how representa-
tive these group-averaged maps were. To reveal the distribution 
of group-to-individual similarity across all of the individuals, we 
conducted correlation analyses between group-averaged maps 
and individual-specific maps for each type of brain connectiv-
ity measure (Supplementary Fig. 6a). The results suggested that 
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Fig. 2 | The relative contribution of long-range and short-range fibres to the face connectome. a, The overlap between six major white matter bundles37 

and the face connectome in the right hemisphere. Each percentage value in the matrices represents the mean overlapped volumes between an ROI–ROI 

connection and a major fasciculi across all individuals. Taking the FFA–ATL connection as an example, 27% voxels of the tract overlapped with the ILF and 

6% overlapped with the IFOF; the tract did not overlap with the SLF (0%) and had a minimal portion of overlap with the CING (2%), UF (2%) and AF (1%). 

After reviewing all of the overlap maps with ten major fasciculi in the right hemisphere, we found that the primary contributors to the ventral pathway (EVC–

OFA–FFA–ATL–AMG) were the ILF and IFOF, the medial pathway (AMG–OFC–PCC) was mainly constructed with the UF and CING, and the dorsal pathway 

(STS–IFG) was mostly supported by the SLF and AF. Similar results were found in the left hemisphere (Supplementary Fig. 3). b, After overlaying all 72 ROI–

ROI connections (across two hemispheres) onto two standard white matter atlases, we found that around 57% of the face connectome can be classified 

as short-range fibres, whereas only approximately 34.3% can be labelled as long-range fibres. For each ROI–ROI connection, the values in the matrices 

represent how well the connection can be explained by the tracts in each atlas. In the OFA–FFA connection, for example, 11% of voxels in bilateral OFA–FFA 

connections overlapped with long-range tracts in the JHU atlas41, whereas 99% of voxels in bilateral OFA–FFA connections overlapped with superficial tracts 

in the LNAO atlas43. Results for each hemisphere are provided in Supplementary Fig. 4. Moreover, we found an important relationship between the face 

connectome and the long-range fibres: the farther two face ROIs were spatially separated from each other (for example, EVC–OFA versus EVC–OFC), the 

more contributions long-range fibres made to their connections (for example, 4% versus 45%). No credible evidence of such linear relationship was found 

for short-range fibres (r�=�−0.042, P�=�0.729, BF10�=�0.098). Top left image adapted from ref. 37; top right image reproduced from ref. 43.
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group-averaged matrices were strongly correlated with individ-
ual-specific matrices for SC, rsFC and taskFC (Supplementary 
Fig. 6a), and most individuals (>75%) exhibited maps that were 
highly similar (r > 0.5) to the group-averaged maps. However, the 

group-averaged EC matrices showed moderate correlation with 
individual-specific EC matrices, and most individuals (>67%) 
exhibited small-to-medium correlation (0.1 < r < 0.5) with the 
group-averaged matrices.
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Fig. 3 | All of the brain connectivity maps of the face network and their correspondence. a,b, The anatomical connectome, consisting of three core 

pathways and communities (highlighted by blue dashed lines). c–e, Functional brain connectivity patterns during rest or during the face localizer task. 

Most co-activations (c and d) and task-modulated brain dynamics (e; from PPI analyses) were observed among six face areas (that is, EVC, OFA, FFA, 

PCC, STS and IFG, which are highlighted by green dashed lines). f–i, The correspondence between different types of brain connectivity, either across the 

entire network or only within the three core pathways. Comm, communicability. For f, g and h, asterisks indicate significant positive correlations between 

two connectivity types. The results in f show that the SC (a) and communicability (b) maps across the entire face network were highly correlated with FC 

maps (rsFC (c) and taskFC (d)), but the EC map (e) was dissimilar to any of them, because it reflects asymmetrical and directional information processing 

during face perception. We further demonstrated that the tight anatomy–function relationship across the entire network was mainly driven by core 

pathways (g) because little evidence of such anatomy–function association was found outside of the core pathways (h; the red dashed boxes represent the 

null anatomy–function correspondence). For simplicity, all of the maps from in a–h were results from the right hemisphere. The left hemisphere yielded a 

very similar pattern of correspondence (Supplementary Fig. 5). i, Mediation analyses revealed the network communicability functions as mediator for the 

association between anatomical connectivity and FC. This mediator role was only found in the core pathways (but no evidence was found for the entire 

face network). The values in brackets indicate the standard error of the coefficient in each mediation model.
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Next, we used two cross-validation schemes to further study 
group-to-group and group-to-individual similarity, that is, the 
split-half cross-validation (using matrices of 50% of individu-
als to predict matrices for the other 50% of individuals) and the 
LOOCV (using matrices of n − 1 individuals to predict the matri-
ces of a new individual; Supplementary Fig. 6b). Again, both 
methods revealed very high train–test correlation for SC, rsFC 
and taskFC and relative moderate train–test correlation for the 
EC (Supplementary Fig. 6b). In summary, we found that the orga-
nization of the face connectome is highly homogeneous across 
individuals and, in particular, for SC, rsFC and taskFC. Thus, our 
reported group-averaged matrices indeed reflect the connectivity 
patterns of most individuals.

The relationships between SC and FC. To further explore the 
anatomy–function relationship within the face network, we exam-
ined the correspondence between the anatomical and functional 
connectome. Across the entire network, FC patterns (rsFC and 
taskFC) were highly correlated with SC and communicability pat-
terns (Fig. 3f; rsFC and SC: mean r = 0.321, t666 = 43.72, P < 0.001, 
d = 1.69, 95% CI = 0.306–0.335; rsFC and communicability: mean 
r = 0.304, t666 = 47.42, P < 0.001, d = 1.84, 95% CI = 0.291–0.316; 
taskFC and SC: mean r = 0.234, t666 = 33.73, P < 0.001, d = 1.31, 95% 
CI = 0.221–0.248; taskFC and communicability: mean r = 0.199, 
t666 = 32.50, P < 0.001, d = 1.26, 95% CI = 0.187–0.211). This sup-
ports the idea that FC is dictated by the underlying white matter 
architecture and network communicability34,55. However, when we 

EVC
OFA

FFA

STS

PCC

AMG

IFG

OFC

ATL

EVC
OFA

FFA

STS

PCC

AMG

IFG

OFC

ATL

EVC

a

OFA

FFA

ATL

STS

IFG

AMG

OFC

PCC

EVC
OFA

FFA
ATL

STS
IF

G
AMG

OFC
PCC

0

0.1

–0.1

–0.2

–0.3

0.2

0.3

Left hemisphere Right hemisphere

PPI β
estimates

**
**

*

*

*

*

* *
*

* * *

*
*

*

*

*

*

*

* * * *
* * **

*

*

S
ee

d 
R

O
Is

Target ROIs

S
ee

d 
R

O
Is

Target ROIs

EVC

OFA

FFA

ATL

STS

IFG

AMG

OFC

PCC

EVC
OFA

FFA
ATL

STS
IF

G
AMG

OFC
PCC

PPI

DCM BMS

Feedforward model Recurrent model

Left hemisphere

R
el

at
iv

e 
lo

g 
ev

id
en

ce

RecurrentFeed
forward

FFX

E
xc

ee
da

nc
e 

pr
ob

ab
ili

ty RFX

0.6

0.4

0.2

0
Recurrent

Feed
forward

800

b

600

400

200

0

1.0

0.8

Right hemisphere

R
el

at
iv

e 
lo

g 
ev

id
en

ce

RecurrentFeed
forward

E
xc

ee
da

nc
e 

pr
ob

ab
ili

ty

Recurrent
Feed

forward

FFX RFX80

60

40

20

0

0.6

0.4

0.2

0

1.0

0.8

Fig. 4 | The brain dynamics within the face network during the face localizer task. a, PPI results. Top: EC matrices for each hemisphere. The asterisks 

indicate statistically significant EC. Bottom: an illustration of all directional information flow summarized from the two EC matrices. Qualitatively, the 

two hemispheres exhibited entirely different patterns of brain dynamics. Only feedforward information cascades were identified in the left hemisphere, 

whereas both feedforward and feedback processing were found in the right hemisphere. To further validate these PPI findings, we built two DCM models 

(that is, feedforward versus recurrent) and tested their respective fitness to the observed data in each hemisphere. As the most powerful applications of 

DCM used networks with a relatively small number of nodes and a relatively simple model space motivated by a priori knowledge, the two DCM models 

were constructed with four core face areas that interacted in the same way as in the PPI results (the two dashed grey boxes). Further details of model 

specifications as well as additional exploratory analysis of a larger model space are provided in Extended Data Fig. 2. b, DCM BMS results. The fixed-

effects (FFX) and random-effects (RFX) group analyses consistently indicated that the feedforward model was optimal for the left hemisphere, whereas 

the recurrent model was optimal for the right hemisphere. Overall, the EC analyses using PPI and DCM both suggested a differential pattern of face-

evoked information processing across two hemispheres.
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scrutinized the anatomy–function similarity inside or outside the 
core pathways, we observed this tight relationship in only core path-
ways (rsFC and SC: mean r = 0.358, t666 = 26.46, P < 0.001, d = 1.02, 
95% CI = 0.331–0.384; rsFC and communicability: mean r = 0.367, 
t666 = 30.21, P < 0.001, d = 1.17, 95% CI = 0.343–0.391; taskFC and 
SC: mean r = 0.343, t666 = 25.92, P < 0.001, d = 1.00, 95% CI = 0.317–
0.369; taskFC and communicability: mean r = 0.335, t666 = 27.56, 
P < 0.001, d = 1.07, 95% CI = 0.312–0.359; Fig. 3g) and did not 
observe statistically significant association in the non-core-path-
ways (rsFC and SC: mean r = 0.005, t666 = 0.72, P = 0.473, d = 0.03, 
95% CI = −0.009–0.020, BF10 = 0.040; rsFC and communicability: 
mean r = 0.007, t666 = 0.72, P = 0.472, d = 0.03, 95% CI = −0.012–
0.025, BF10 = 0.040; taskFC and SC: mean r = 0.003, t666 = 0.36, 
P = 0.722, d = 0.01, 95% CI = −0.012–0.018, BF10 = 0.033; taskFC 
and communicability: mean r = 0.004, t666 = 0.44, P = 0.659, d = 0.02, 
95% CI = −0.015–0.023, BF10 = 0.034; Fig. 3h). This suggested that 
the high anatomical–function coherence across the entire face net-
work was mainly driven by the core pathways. Furthermore, even 
though the general pattern of SC and FC were highly correlated 
inside the core pathways, strong disagreement was observed in mul-
tiple connections (Fig. 3a,c). For example, we found that the FFA 
and ATL are structurally interconnected but are not functionally 
interconnected (the same applies to ATL–AMG). By contrast, the 

OFA–STS and FFA–STS showed strong FC but weak SC. All of these 
observations suggest that rsFC is an imperfect representation of the 
underlying SC56,57.

Previous research reported that communicability might be a use-
ful analytical measure to link SC and FC58,59. To test this hypoth-
esis, we applied multilevel mediation analyses to our data, assessing 
whether communicability mediated the relationship between SC 
and rsFC. For the core pathways (Fig. 3i), the results showed that 
SC significantly predicted rsFC (path c: unstandardized beta 
(B) = 0.269, s.e. = 0.015 P < 0.001), which was consistent with our 
correlation analysis in Fig. 3g; however, after adding communicabil-
ity into the model, we found no statistically significant association 
between SC and rsFC (path c′: B = 0.047, s.e. = 0.045, P = 0.299). 
Moreover, as assessed using Akaike’s information criterion (AIC) 
and Bayesian information criterion (BIC), model fit was greater 
with communicability added in as the mediator (AIC = 1,211.84; 
BIC = 1,271.08) compared with the model in which SC indepen-
dently predicted rsFC (AIC = 1,230.10; BIC = 1,289.33), indicating 
that communicability fully mediated the relationship between SC 
and rsFC. By contrast, no credible evidence suggests that commu-
nicability is a mediator between SC and rsFC for the entire face net-
work (path c: B = 0.220, s.e. = 0.008, P < 0.001, AIC = −15,981.75, 
BIC = −15,340.85; path c′: B = 0.279, s.e. = 0.022, P < 0.001, 
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Fig. 5 | The spatial specificity of face connectome organizations in the right hemisphere. Brain connectivity patterns were measured and compared 

across three different methods of defining ROIs. Top row: we first defined each ROI using individual-specific coordinates from the functional face 

localizer. The major findings in this Article were obtained using this method, such as the three distinct pathways found in the SC (blue dashed line) and 

the six synchronized areas found in the FC and EC (green dashed line). Middle row: we then permuted individual-specific coordinates across individuals 

(for example, the FFA coordinates of individual A now became individual B’s; the ATL coordinates of individual C now became individual D’s). As the 

individual variations in the coordinates of each ROI can be typically circumscribed by a sphere with a radius of 10–15�mm (group coordinate ranges are 

provided in Supplementary Table 1), these new shuffled coordinates were in relatively close proximity to the original individual-specific coordinates. We 

found that the patterns of SC and FC during rest and task remained the same after this permutation manipulation, but the effectivity connectivity was 

changed significantly. Bottom row: finally, we chose new ROIs even farther away in space—with new coordinates just outside the putative range (that is, 

20�mm from its original coordinates, so that the FFA coordinates of individual A could now fall into the inferior temporal gyrus). After this 20-mm shifting 

manipulation, these out-of-range coordinates substantially altered all four brain connectivity patterns, therefore showing that our findings had spatial 

specificity. Similar results of spatial specificity were found in the left hemisphere.
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AIC = −15,982.39, BIC = −15,341.50). In summary, we found that 
communicability mediated the anatomy–function relationship only 
in core face pathways and it outperformed the standard SC as a  
predictor of rsFC.

Brain–behaviour associations. The simplest and most popular 
method for establishing brain–behaviour relationships is correla-
tion. We first computed simple Pearson correlations between the 
facial emotion recognition performance of individuals and all types 
of brain measurements (such as blood-oxygen-level-dependent 
(BOLD) signals from each face area, white matter characteristics, 
FC and EC). We found no statistically significant univariate cor-
relation in this whole-connectome search (all r values < 0.065, all  
P values > 0.092, all BF10 values < 0.119).

As this simple correlation method is not robust when studying 
a complex brain–behaviour association60 and can typically incur 
serious problems of multiple comparison when searching the whole 
connectome, we subsequently used a machine learning regression 
algorithm. Individualized behavioural prediction using machine 
learning regression is becoming increasingly popular in neuroim-
aging, and this approach has been recommended as multivariate 
pattern analysis for exploring the complex relationship between 
behaviour and distributed patterns of brain features61,62. Here we 

used support vector regression (SVR) to examine whether the 
global pattern of any groups of brain metrics can predict individual 
face processing skills (Fig. 6).

The SVR analyses revealed two groups of brain metrics that 
can successfully predict individual differences in facial emotion 
recognition accuracy—the neural activity features from all face 
ROIs (model goodness-of-fit: adjusted R2 = 0.014, F1,665 = 10.271, 
P = 0.001, 95% CI = 0.048–0.199) and the fractional anisotropy (FA) 
profile of all white matter tracts (adjusted R2 = 0.016, F1,665 = 12.136, 
P = 0.001, 95% CI = 0.058–0.209). To identify the subsets of ROIs or 
white matter tracts that were essential for prediction, we performed 
feature selection to rank the contribution of each feature to the SVR 
model and implemented the parsimonious model test to reveal the 
minimal subsets that can successfully predict the behaviour. The 
results revealed a subset of six face ROIs (left AMG, right OFA, 
right EVC, right IFG, right STS and right ATL) and a subgroup of 
white matter fibre paths (left EVC–STS, left IFOF, right AF, right 
OFA–IFG and right STS–ATL) as the most predictive and essen-
tial features for the two successful SVR models (Fig. 6c). Notably, 
the white matter parsimonious model (root-mean-square error 
(r.m.s.e.) = 0.982) predicted behaviour better than the neural activity 
parsimonious model (r.m.s.e. = 1.035). To further rule out the pos-
sibility that the function of these brain features are only for general 
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FA values from 92 white matter tracts (72 ROI–ROI connections�+�20 major fasciculi) across all of the individuals and set them as independent features 

in the model. We adopted a leave-one-individual-out cross-validation (LOOCV) scheme to train and test data and examined whether the SVR model of 

a particular brain metric (such as FA) can predict a performance score (such as emotion recognition accuracy, ER40_CR (ref. 101)). If the predicted score 

was significantly associated with the true score, we proceeded to the feature selection step. Image of male’s face reproduced from ref. 101 with permission 

(Elsevier). b, We used a leave-one-feature-out method for feature selection (with a fivefold cross-validation scheme) and ranked the importance of each 

feature on the basis of the incurred r.m.s.e. in the absence of that feature. We next performed the parsimonious model test by sequentially testing a series 

of SVR models with combination of top n important features (for example, top 10 at first, then top 9,�8,�7, and so on) until we had a model with n�−�1 features 

that was no longer able to predict the performance of an individual. Again, we adopted the LOOCV scheme to train and test data in the parsimonious 

model test. c, Among all of the groups of brain metrics, we found that only the SVM model with neural activity of all the face ROIs and the model with FA 

value of all tracts can successfully predict the emotion recognition accuracy of an individual. The parsimonious model tests further revealed a subset of six 

face ROIs and a subset of five white matter tracts that were the most predictive features for the two successful SVM models. Note that these two subsets 

of face ROIs and white matter tracts corresponded well with each other, suggesting that critical tracts were also connecting critical ROIs.
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performance (for example, task accuracy and reaction times), we 
used the two parsimonious models to predict other HCP non-face 
behavioural performance. We found no credible evidence that these 
features are predictive of the working memory 2-back task accu-
racy and speed (that is, neural activity model for accuracy: adjusted 
R2 < 0.001, F = 0.57, P = 0.450, 95% CI for B = −0.047–0.105, 
BF10 = 0.041; neural activity model for speed: adjusted R2 = 0.002, 
F = 2.23, P = 0.135, 95% CI for B = −0.018–0.134, BF10 = 0.093; 
white matter model for accuracy: adjusted R2 < 0.001, F = 0.09, 
P = 0.770, 95% CI for B = −0.065–0.087, BF10 = 0.032; white mat-
ter model for speed: adjusted R2 < 0.001, F = 0.03, P = 0.859, 95% 
CI for B = −0.083–0.069, BF10 = 0.031), theory of mind judgement 
speed (that is, neural activity model: adjusted R2 = 0.001, F = 1.89, 
P = 0.169, 95% CI for B = −0.023–0.129, BF10 = 0.079; white mat-
ter model: adjusted R2 < 0.001, F = 0.01, P = 0.911, 95% CI for 
B = −0.072–0.080, BF10 = 0.031) and delay-discounting ability (neu-
ral activity model: adjusted R2 = 0.001, F = 1.80, P = 0.180, 95% CI 
for B = −0.024–0.128, BF10 = 0.076; white matter model: adjusted 
R2 = 0.003, F = 3.17, P = 0.080, 95% CI for B = −0.145–0.007, 
BF10 = 0.149). This confirms that our predictive brain features are 
specific to face processing. There is little credible evidence that sug-
gests that any FC or EC measures were able to predict accuracy on 
the facial emotion recognition task (for example, rsFC performance: 
adjusted R2 = 0.002, F = 2.24, P = 0.135, 95% CI for B = −0.018–
0.135, BF10 = 0.094; EC performance: adjusted R2 < 0.001, F = 0.01, 
P = 0.931, 95% CI for B = −0.079–0.073, BF10 = 0.031).

Hemisphere lateralization. Although face processing has been 
consistently linked to activity in the right hemisphere and uni-
lateral right hemisphere damage can result in prosopagnosia, 
the same is not true of damage to the left hemisphere1. Here we 
investigated whether such lateralization exists at the connectome 
level. Repeated-measure analysis of variance (ANOVA) revealed 
significant hemispheric asymmetry in the neural responses of 
face ROIs (F1,666 = 238.64, P < 0.001, partial η2 = 0.264; mean dif-
ference = 0.617, 90% CI = 0.551–0.683), white matter connectivity 
probability (F1,666 = 9.25, P = 0.002, partial η2 = 0.014; mean differ-
ence = 0.002, 90% CI = 0.001–0.002), rsFC (F1,666 = 17.63, P < 0.001, 
partial η2 = 0.026; mean difference = 0.008, 90% CI = 0.005–0.011) 
and EC during the face localizer task (F1,666 = 9.17, P = 0.003, par-
tial η2 = 0.014; mean difference = 0.023, 90% CI = 0.011–0.036). 
Post hoc t-tests further indicated the direction of lateralization for 
each condition (Supplementary Table 2). We found that 7 out of 9 
face areas showed stronger responses in the right hemisphere; this 
did not include the EVC and OFC, for which we found no cred-
ible evidence of hemispheric difference (EVC: t = −0.36, P = 0.716, 
d = 0.01, 95% CI = −0.164–0.113, BF10 = 0.033; OFC: t = −0.71, 
P = 0.477, d = 0.03, 95% CI = −0.183–0.086, BF10 = 0.028). For the 
diffusion-imaging data, mixed results were found in the anatomi-
cal connectome; 9 connections lateralized to the right hemisphere 
(for example, STS, AMG and OFC fibres) and 7 connections 
lateralized to the left hemisphere (for example, IFG and PCC 
fibres). We found that 18 connections in the functional connec-
tome exhibited right-hemispheric predominance (9 connections 
in rsFC and 11 connections in EC), whereas only 2 connections 
had left-hemispheric predominance (2 connections in rsFC). 
Importantly, we found a positive correlation between a face area’s 
degree of lateralization and its intra- and interhemispheric con-
nection ratio (Fig. 7); face areas with a high ratio of intra- over 
interhemispheric connections (for example, STS, OFA, FFA and 
ATL) exhibited more prominent right hemispheric lateralization 
in their neural responses to face stimuli (r9 = 0.769, P = 0.015, 
95% CI = 0.197–1.340). In summary, we found strong evidence of 
hemispheric asymmetry at all levels of the face network and face 
areas in the right hemisphere generally exhibited enhanced neural 
responses and stronger SC and FC.

Discussion
Here we systematically investigated the anatomical and functional 
connectome of a well-defined domain-specific system—face pro-
cessing. Nodes in the face processing network have been rigorously 
investigated in cognitive neuroscience and neuropsychology for 
more than 40 years1–5. This literature provides a strong foundation 
for our network-based analyses that were both hypothesis and data 
driven, enabling us to explain the mechanisms that underlie face 
processing at the connectome level.

Our large-scale multi-modal study revealed several interest-
ing findings. First, previous diffusion-imaging studies focused on 
a subset of face-sensitive regions23,24 and proposed the existence of 
two face processing streams, a ventral pathway for identity process-
ing and a dorsal pathway for processing dynamic aspects of faces1,5. 
We looked at nine functionally and individually defined face-sensi-
tive regions in each hemisphere, stretching from the occipital lobe 
to the frontal lobe, and encompassing both core and extended face 
processing1,5,20. This enabled us to describe segregated pathways of 
a precise and comprehensive face connectome. The network com-
municability analysis indicated that the face network can be ana-
tomically divided into three separate pathways: (1) the OFA, FFA 
and ATL constitute a ventral pathway that possibly extracts static 
features from faces; (2) the STS and IFG comprise a dorsal path-
way, which is specialized for processing dynamic information from 
faces; and (3) PCC–AMG–OFC form a medial pathway that might 
be responsible for processing the social, motivational and emotional 
importance of faces. Multiple medial areas for value and reward 
processing have been associated with judgements of facial attrac-
tiveness and trustworthiness10,19,63. Finally, the ROI-to-ROI tractog-
raphy patterns showed very weak connection strengths in OFA–STS 
and FFA–STS, suggesting that they belong to different face process-
ing subsystems, a finding that is consistent with previous diffusion-
imaging work23,24.

Second, our results shed light on a disagreement in the litera-
ture about the serial and hierarchical nature of the face processing 
system. An early and prominent model by Haxby et al.5 postulated 
a serial-hierarchical structure, in which the core regions have a 
strict serial ordering—the OFA feeds into the FFA and STS. More 
recent human imaging research has modified this scheme by pro-
posing an additional processing node, the ATL, and suggested that 
the system is recursive64. Although some of our data indeed sug-
gest that the OFA, FFA and STS are the most active parts of the 
face network because they had the largest neural responses to face 
stimuli and were constantly synchronized during rest and tasks, our 
overall results challenge these frameworks. The global connectiv-
ity patterns demonstrated that the EVC sends projections to most 
of the face sensitive areas, suggesting that there is no gateway (or 
solo entry point) for FFA and STS. This is consistent with previ-
ous research in patients65–67. Moreover, the dynamic patterns of EC 
suggest that face processing does not proceed strictly in sequence 
but, rather, in a parallel and reciprocal manner. Our results are more 
consistent with research in macaques showing that face patches are 
densely and bidirectionally interconnected, inconsistent with a 
serial hierarchy3,21. Importantly, and potentially unique to humans, 
the two hemispheres appear to perform distinct schemes of compu-
tations and interactions during the face localizer task (the left hemi-
sphere is feedforward whereas the right hemisphere is recurrent). 
Similar functional asymmetries have been reported in face magne-
toencephalography studies68,69.

Our third interesting finding is that local white matter has a dis-
proportionate role in the anatomical connectome supporting face 
processing. On the basis of a recent literature review22, two long-
range fibre pathways—the ILF and IFOF—are the most frequently 
reported tracts associated with face processing (11 out of 16 stud-
ies), whereas the local white matter was rarely mentioned (2 out of 
16 studies). Moreover, as most face ROIs are spatially far apart (for 
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example, 75% of connections had a Euclidian distance >50 mm;  
Fig. 2b), long-range fibres would be expected to play the primary role 
in the structural connectome. Indeed, our results have shown the 
incremental proportion of long-range fibres as the distance between 
two face ROIs increases (Fig. 2b) and there is solid spatial overlap 
between major fasciculi and three face pathways (that is, the ventral 
pathway maps onto the ILF and IFOF; the medial pathway was con-
structed from the UF and CING; and the dorsal pathway consisted 
of the SLF and AF; Fig. 2a). However, this description of fibre path-
ways is incomplete because these long-range fibre bundles account 
for only ~30% of the face connectome. Instead, most face nodes are 
interconnected by short-range fibres. Our observation is consistent 
with older histology studies that reported that the human cerebral 
white matter is dominated by short-range fibres that connect adja-
cent gyri38 and complies well with the ‘small-world’ characteristic 
of brain networks70. It is believed that abundant short-range fibres 
function to adaptively minimize global wiring costs, whereas sparse 
long-range connections contribute to functional integration71,72. 
Here we found that most ROI–ROI connections were redundantly 
constructed from both types of fibres (Fig. 2b), for example, the STS 
and IFG can be directly linked through major fasciculi (80%) or 
can be connected indirectly by superficial fibres through multiple-
hop-relays (99%). This redundant architecture may provide the face 
network with resiliency in the case of brain injury and disease, pos-
sibly explaining why prosopagnosia is so rare64,73. Future research is 
needed to explore whether these features (that is, disproportionate 
local connectivity, distance effect on long-range fibres and redun-
dant connections) are specific to the face network or whether they 
exist in other domain-specific systems, or can be generalizable to 
the entire cortical ‘neighbourhoods’.

Fourth, we provide empirical evidence of the face processing lat-
eralization at the connectome level. The functional asymmetry of 
face processing is often referred to as a fundamental lateralization 
of the human brain74. Right hemispheric predominance has been 
repeatedly found in behavioural performance75, neural activation76, 
electrophysiological responses77, intracranial stimulation effects78 
and prosopagnosia cases1. Compared with the left hemisphere, face 

areas in the right hemisphere were more anatomically connected, 
more synchronized during rest and more actively communicating 
with each other during face perception. Furthermore, we found a 
critical association between the ratio of intra- and interhemispheric 
connection and the degree of lateralization, which lends support to 
an older theory that suggests that hemispheric asymmetry arises 
from interhemispheric conduction delay79. According to the theory, 
brain size expansion during evolution led to the emergence of func-
tional lateralization to avoid excessive conduction delays between 
the hemispheres. This theory predicts that, to function efficiently, 
functionally lateralized brain regions will have relatively weak cal-
losal connectivity as compared with non-lateralized regions80. 
Our data support this prediction by showing that face areas with 
stronger functional lateralization exhibited less interhemispheric, 
but more intrahemispheric, connections. It is plausible that the 
connectome-level origin of face network lateralization arises from 
extremely imbalanced intrahemispheric–interhemispheric connec-
tions, which causes neural signals to spread more easily among face 
areas within the same hemisphere than across hemispheres.

We also examined the anatomy–function relationship of the 
face network by systematically examining relationships between 
different types of brain connectivity. We found that the topologi-
cal organization of the anatomical connectome (that is, three core 
pathways) was consistent across measures (for example, connection 
probability, communicability and streamline count maps) and the 
FC patterns were highly similar across resting and task states. This 
within-modality coherence is in line with reports on other neural 
networks36,48. We also explored the spatial specificity of all brain 
connectivity patterns and found that those intrinsic network archi-
tectures (that is, SC, rsFC and taskFC) followed a more global pat-
tern that was relatively stable across small spatial scales, whereas the 
EC pattern seemed to be specific to the face-sensitive sub-regions. 
However, the relationship between SC and FC is not straightfor-
ward. Although the SC and rsFC were globally correlated across 
the entire network, this effect was mainly driven by high anatomy–
function coherence from the core pathways (Fig. 3g), whereas other 
parts of the network showed no such correspondence (Fig. 3h). 
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Fig. 7 | The association between the degree of lateralization and the ratio of intra- and interhemispheric connection across all face areas. a, The 

interhemispheric and intrahemispheric connection strength for each face ROI. The width and the colour of each line in the diagram proportionally reflect 

mean streamline counts across all of the individuals. b, Across all nine face areas, we found a positive correlation between an area’s degree of lateralization 

to face stimuli (y axis, the ratio of BOLD signal magnitude in the right hemisphere node over the left hemisphere node) and its intrahemispheric/

interhemispheric connection ratio (x axis; Intra/Inter). Those areas with low ratios of intrahemispheric/interhemispheric connection (such as EVC 

and OFC) exhibited no lateralization in their neural responses to face stimuli, whereas the areas with high ratios of intrahemispheric/interhemispheric 

connection (such as STS and FFA) exhibited strong right hemisphere predominance.
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Interestingly, we found a similar ‘global versus local’ discordant 
pattern in the subsequent mediation analyses in which the com-
municability fully mediated the prediction from the SC to rsFC in 
core pathways (Fig. 3i) but not across the entire network. Together, 
these findings add to a growing body of literature on the complex 
nature of the anatomy–function relation55,81–87 and shed light on why 
rsFC is an imperfect representation of the underlying neural archi-
tecture. Our results demonstrated that, even for a domain-specific 
system like the face network, the anatomy–function relationship 
is heterogeneous across different connections and depends highly 
on the local degree of communicability. Moreover, our data clearly 
showed that the communicability metric is superior to the SC mea-
sure when predicting FC. This is because conventional SC is based 
on direct connectivity weight but this is too simplistic to model 
distributed neural communications. The communicability metric 
takes into consideration all of the direct and indirect relationships 
between two nodes and, therefore, provides additional information 
about the global dynamics of the network36,59.

Finally, to explore the brain–behaviour association for individual 
face skills, we investigated how proficiency of emotion recognition 
emerges from patterns of neural activity and connectivity among 
face-sensitive regions. Using multiple SVR analyses, we found that 
the most predictive brain features for individual performance were 
distributed across six face-sensitive brain regions and five white 
matter connections. The HCP emotion recognition test is a com-
plex task that taps into multiple mental constructs and operations 
(such as perceptual, cognitive, affective and semantic processes). 
The most predictive brain features corresponded well with the neu-
ral bases of these operations—facial identification (EVC, OFA and 
IFOF), embodied simulation (STS, IFG and AF), affective process-
ing (AMG) and the retrieval of emotion concepts and labels (ATL 
and STS–ATL)22,73,88. Both hemispheres were probably involved 
because the task requires face recognition as well as lexical retrieval. 
Our results accounted for only a small amount of the behavioural 
variance, potentially due to the fact that the behavioural task is very 
easy for non-clinical cohorts thereby limiting behavioural variance. 
However, white matter characteristics outperformed other brain 
features in individualized behavioural prediction, which signifies 
that the anatomical connectome is a useful biomarker for individual 
variation in high-level cognition62 and social skills73.

Limitations
This study has some methodological limitations. First, similar to 
other large-scale publicly available datasets, the HCP has certain 
inherent problems. For example, the psychometric and neuroim-
aging data may be suboptimally designed for studying ‘pure’ face 
processing (for example, the face localizer is embedded in a work-
ing memory task and there is only one face-related behavioural test, 
which is to name emotional faces); the data may therefore contain 
substantial noise and confounding factors that could in part drive 
the observed effect89,90. Second, some behavioural tasks (such as the 
Penn Emotion Recognition Test) were too easy for healthy indi-
viduals as they were originally designed for clinical populations, 
therefore resulting in ceiling effects for brain–behaviour correla-
tion. Furthermore, there is an extremely unbalanced number of 
right- and left-handed individuals in the HCP dataset (680 versus 
70), which prevented us from comparing the face connectome 
between the two handedness groups (especially for the genesis of 
hemispheric asymmetries in face processing).

Second, rsFC is prone to methodological and conceptual prob-
lems91,92; interpretations should therefore be cautious with regard 
to their cognitive and causality meanings56,81,93. Moreover, dMRI 
tractography has recently been criticized for high false-positives 
and there is an urgent need for methodological innovation in trac-
tography algorithms to address this issue29,30,94. However, these 
tools provide considerable insights on the structural and functional  

architecture of brain networks. As both techniques develop, we 
hope that other researchers will replicate and extend our findings.

Third, the notion of directionality in PPI is an important topic 
that often causes confusion. The unidirectional or asymmetric pat-
terns are not uncommon in the PPI literature52,53,95 and they were 
clearly observed in this study (for example, the left hemisphere 
had only feedforward directions). In a very strict sense, PPI analy-
sis should be interpreted as a simple test for EC because it is based 
on an explicit (and often linear) model of coupling between one or 
more brain regions45,51. However, we note that the post hoc inter-
pretation of PPI results can be ambiguous as a significant increase 
in coupling from one region to another region may be significant 
when testing for a PPI in the opposite direction52. Further research 
is needed to determine whether the hemispheric differences in 
information processing observed here are true or an inflated arte-
fact96 or are caused by other experimental confounding factors 
(such as button press by right hand during the task). Furthermore, 
as DCM is computationally expensive for large data, we only tested 
few simplistic models with four nodes in this study. Future studies 
are needed to examine larger model space with other datasets or use 
other EC approaches97–100 to confirm our findings.

Conclusions
Face processing has been investigated in neuroscience research for 
more than 40 years. Although much research has addressed the 
functional specialization of single face-selective regions, the connec-
tome-level organization and brain-wide mechanisms for functional 
integration of face processing remains poorly understood. New 
trends in connectomics suggest that the function of any face areas 
should be considered within an integrative approach, including not 
only patterns revealed by local properties, but also interactions with 
other face areas90. For that, here we used large-scale multimodal 
neuroimaging data to investigate the anatomical and functional 
connectome of the face network. Functionally defined white matter 
tracts, using probabilistic tractography, delineated a well-organized 
anatomical architecture with three core pathways for different types 
of information processing. Fibre composition analyses revealed that 
the anatomical connectome is primarily constructed by short-range 
fibres, and not major white matter bundles. FC and EC analyses 
discovered a subnetwork of face areas that are constantly synchro-
nized across contexts and they exhibit differential neural dynam-
ics across hemispheres during face perception (feedforward versus 
recurrent interactions). Moreover, we found that the SC and FC are 
highly associated in the face network and network communicability 
mediates this close correspondence in core pathways. Furthermore, 
individual differences in face skills can be predicted by a distributed 
pattern of connectome characteristics, in particular the white mat-
ter integrity. Finally, we demonstrate that an imbalanced pattern of 
intra- and interhemispheric connections might be the connectome-
level basis for the hemispheric asymmetry of the face network. 
Collectively, we discovered a wide range of important features of the 
face connectome that go beyond the classic as well as more recent 
models of face processing. These connectome-level characteristics 
provide new constraints for face-perception theories and offer valu-
able empirical evidence for a fine-grained organization and interac-
tive mechanisms of face processing.

Methods
Participants. All data used in this study were obtained from the WU-Minn HCP 
Consortium S900 Release. Individuals were included if they had completed all of 
the brain scans (T1/T2, task fMRI, resting-state fMRI and dMRI) as well as the 
behavioural Penn Emotion Recognition Test101. To reduce variance in the human 
connectome102, we restricted our population to only to right-handed individuals, 
resulting in 680 healthy young adults in the final sample (381 females, aged 22–36 
years). Only 667 out of 680 individuals were detected with enough robust signals 
in all nine bilateral face ROIs in the face localizer task (Supplementary Table 1); 
most of the connectome-level findings were therefore based on 667 individuals. 
No statistical methods were used to predetermine this sample size, but the sample 
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size is much larger than those reported in previous publications23–26. The study was 
reviewed and approved by Temple University’s Institutional Review Board.

Data acquisition, preprocessing and analysis. Owing to the complexity of the 
HCP data acquisition and preprocessing pipeline, listing all of the scanning 
protocols and data analysis procedures is beyond the scope of this paper; however, 
the protocols and procedures were described in full detail previously27,103–106. We 
adopted the ‘minimally pre-processed’ images of tfMRI, rsfMRI and dMRI that 
were provided by the HCP S900 Release. The dMRI data had been processed 
for EPI distortion, eddy current and motion correction, gradient nonlinearity 
correction and registration of the mean b0 volume to a native T1 volume. The 
fMRI data had undergone spatial artefact/distortion correction, cross-modal 
registration and spatial normalization to Montreal Neurological Institute (MNI) 
space. Moreover, we further processed the dMRI data using FSL’s BEDPOSTX107 
to model white matter fibre orientations and crossing fibres, and denoised the 
rsfMRI data using ICA-FIX and tfMRI data with ICA-AROMA108 to remove 
motion artefacts. All fMRI data were spatially smoothed at 4 mm. Furthermore, to 
precisely localize each face ROI109,110, the face localizer task was processed on the 
‘greyordinate-based’ space (that is, cortical surface vertices + subcortical voxels) 
using MSM-All registration111.

We used the HCP Penn Emotion Recognition Test as a behavioural measure 
of individual face recognition ability101. Individuals were presented with 40 faces, 
one at a time. They were asked to choose what emotion the face depicted: happy, 
sad, angry, scared or no feeling. Half of the faces were males and half were females. 
The task overall accuracy (ER40_CR) and median reaction time (ER40_CRT) were 
used in the brain–behaviour association analyses.

To ensure sensitivity to the connectome within each individual, we not 
only defined individual-specific ROIs on the basis of the face localizer, but also 
performed all analyses first at the individual level and then combined them into an 
aggregate statistic for group-level inference and significance tests. Unless otherwise 
stated, all significant results reported in this study were two-tailed tests and were 
false-discovery-rate corrected for multiple comparisons. Data distribution was 
assumed to be normal but this was not formally tested. Moreover, all of the null 
results were further evaluated using Bayesian statistics (BF10) in SPSS v.25.

Functional face localizer and selection of face ROIs. The working memory task 
in the HCP tfMRI data can be effectively used as a functional face localizer105. 
Individuals were presented with alternating blocks of four categories of stimuli 
(that is, faces, places, tools and body parts) and were instructed to respond in 
a manner of 2-back and 0-back tasks. As the HCP S900 release had already 
provided the individual-level (within-individual) tfMRI analysis data that were 
fully processed on greyordinate space, we used the connectome workbench 
software to manually extract the vertices (which were later transformed to MNI 
coordinates) of the peak activation of bilateral nine predefined face ROIs (as well 
as its magnitude) from the contrast ‘faces > other categories’ for each individual 
separately (Supplementary Table 1). This task paradigm and contrast has been 
widely used to define human face-sensitive areas112,113 and the processing for face 
and working memory are orthogonal to each other in this contrast (that is, face 
conditions were collapsed across both 0-back and 2-back trials). To ensure the 
selection of face-sensitive voxels, we also inspected another conjunction contrast 
(‘faces > places’ ∩ ‘faces > tools’ ∩ ‘faces > body parts’) and obtained very similar peak 
coordinates. These individual-specific cluster peak coordinates were used as input 
(spheres, 6 mm radius) for subsequent seed-based brain connectivity analyses at the 
individual level (probabilistic tractography, resting-state analysis, PPI and DCM), 
and the cluster peak magnitudes were adopted as the index of neural activity for face 
ROIs in brain–behaviour association and hemispheric asymmetry analysis.

As we are interested in the broader face network, we selected areas not only 
for basic face perception (OFA, FFA and STS), but also for social, emotional and 
mnemonic processing of faces (ATL, OFC, AMG, IFG and PCC). A similar set 
of areas was included in the Haxby model5,6,20 and these areas were widely used 
in previous face network studies23–26,112. Moreover, for face areas with multiple 
clusters (such as OFA, FFA and STS) we simply chose the strongest one to avoid 
excessive interindividual variability24. We note that some regions that were recently 
identified in a study of non-human primates, which showed strong connectivity 
with face patches (for example, the pulvinar and claustrum; Grimaldi et al. 21), were 
not selected in our study because they were not consistently activated by our face 
localizer task and the relevant human literature on these regions is lacking.

Probabilistic tractography. Tractography analyses were performed in the 
native space of individuals and all of the results were transformed to MNI 
standard space. We used both a single-ROI and an ROI-to-ROI approach. 
In the single-ROI approach, each ROI was used as a seed with tractography 
running in the whole brain to obtain a global connectivity pattern. In the ROI-
to-ROI approach, tractography was implemented between each pair of ROIs 
for either intrahemispherical connections (such as left AMG to left ATL) or 
interhemispherical connections (such as left AMG to right AMG). Fibre tracking 
was initiated in both directions (from seed to target and vice versa) and 25,000 
streamlines were drawn from each voxel in the ROI. A binarized cerebellum 
mask was set as an exclusion mask for all of the analyses. The resulting three-

dimensional image files containing the output connectivity distribution were 
standardized using the maximum voxel intensity of each image resulting in a 
standardized three-dimensional image with voxel values that ranged from 0 to 1. 
These standardized path images were then thresholded at the 0.1 level to reduce 
false-positive fibre tracks. Binary connectivity maps were further generated for 
each individual and added across individuals. For global-connectivity-pattern 
and cross-hemisphere projection analyses, fibre projections that existed in 
more than 10% of the individuals were retained and rendered for visualization 
(Supplementary Fig. 1, Extended Data Fig. 1).

We used dtifit in FSL to fit a diffusion tensor model at each voxel. For each 
individual, the FA, mean diffusivity, radial diffusivity and axial diffusivity maps 
were created and the mean values for each ROI–ROI connection were extracted. 
The number of streamlines for each path was calculated by averaging two waytotal 
numbers produced by tractography. The connectivity probability for an ROI–
ROI connection (such as FFA–OFA) was defined as the streamline count of that 
connection divided by the sum of streamline counts of all connections passing either 
of the ROIs (for example, there were totally 15 paths connecting either FFA or OFA)23.

Communicability measure and community detection analysis. Communicability 
was quantified as the weighted sum of direct and indirect SC, in which shorter 
paths (that is, those with fewer steps) were weighted exponentially more heavily35. 
For each individual (and each hemisphere), we derived a communicability map 
from their connectivity probability matrix. This communicability map was 
subsequently compared with other brain connectivity maps at the individual level 
to reveal the anatomy–function relationship.

At the group level, we prepared an averaged communicability map for each 
hemisphere for community detection analysis. Modular partitions of this averaged 
communicability map were obtained using the Louvain community detection 
method (https://python-louvain.readthedocs.io/en/latest/). The algorithm 
computes the partition of the graph nodes that maximizes the modularity using 
Louvain heuristics. Potential shared nodes between communities were also 
checked using the k-clique percolation method114 in the NetworkX toolbox (https://
networkx.github.io/).

Analyses of major white matter bundles and superficial white matter systems. 
For each hemisphere, ten major white matter bundles were identified for each 
individual using AFQ (https://github.com/jyeatman/AFQ)37. We focused our 
analysis on six major fibre tracts that were found to be critical for face processing 
in a recent meta-analysis22: the ILF, IFOF, CING, UF, SLF and AF. We also 
analysed four additional fasciculi provided by the AFQ algorithm (that is, thalamic 
radiations, corticospinal tracts, anterior and posterior corpus callosum) and found 
no overlap between them and all ROI–ROI connections (not reported here).

We used the atlasquery tool in FSL to evaluate the relative contribution of 
major fasciculi and superficial white matter to the face network22. A binarized 
image for each ROI–ROI connection was created for each individual and then 
added together across all of the individuals. We also combined all 72 bilateral 
connections together into one binarized image for each individual and added 
these images together across individuals to obtain the entire connectome image. 
Only voxels that existed in more than 50% of the individuals were retained (that 
is, the skeleton image) and were projected on two white matter atlases: the JHU 
white-matter tractography atlas with 48 long-range tract labels41 and the LNAO 
superficial white matter atlas with 79 U-shaped bundles42. Voxelwise analyses 
were then implemented to calculate the probability that the skeleton image was a 
member of any labelled tracts within each atlas. Note that human white matter is 
idiosyncratic across individuals and the two atlases that we used represent only the 
skeleton of the most common white matter bundles in standard MNI space; as the 
atlases were created by different research groups and using different methods, the 
two atlases are not mutually exclusive and their combination does not explain all of 
the face connectome voxels (that is, the sum is 92%).

PPI and FC analysis on HCP task data. The statistical model used to estimate 
EC and taskFC was a simple general linear regression model (GLM). We used 
two methods to build the generalized PPI115 model (using a non-deconvolution 
method116) for each seed ROI. A simple partial model had 17 separate regressors: 
8 psychological regressors of task events (for example, face, body, place and tool 
stimuli in either 2-back or 1-back mode), 1 physiological regressor of the time 
series of seed ROIs and 8 corresponding interaction regressors (task events × seed 
ROI’s time series). A more complex full model had 25 regressors, including the 
identical 17 regressors in the partial model in addition to 8 extra physiological 
regressors of the time series of non-seed ROIs. In contrast to the partial model,  
the full model was designed to aggressively control for neural responses in  
non-seed regions.

To estimate the taskFC between the seed ROI and other ROIs, we used the 
contrast between regressors of task events (faces > other categories). To estimate 
the EC, we used the contrast between interaction regressors (PPI of faces > PPI 
of other categories). Z-scored β-weights were extracted for each pair of ROIs, 
which resulted in one 9 × 9 matrix for each connectivity type (taskFC or EC), each 
model (full or partial), each hemisphere and each individual. Although the taskFC 
matrices were further symmetrized, no symmetrization was applied to EC matrices 
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due to its directional character (that is, PPI effects indicate some information on 
directional neural interactions)45,52,53. At the group level of the EC, one-sample 
t-tests were performed across individuals at each pair of ROIs to detect any 
significant effectivity connectivity. Nonparametric permutation tests (10,000 times) 
were also implemented to revalidate all of the significant results.

Note that all of the significant findings reported in this paper were based on 
the partial PPI model, as null results were found in the full model. Although a PPI 
model would approximate EC better as more controlled ROIs are added to the 
model, this approach is rarely performed in practice due to multicollinearity and 
the relative paucity of observations compared to potential regions (that is, degrees 
of freedom)52. Here, the null results in the full model reflect that the EC of two 
regions identified in the partial model might be contaminated by the influence of a 
third region. This methodological issue requires further exploration.

DCM on HCP task data. To validate our PPI findings, we performed DCM 
analyses using DCM10 in SPM8 (ref. 47). As it is common practice in DCM to 
restrict the analysis to a small number of nodes54,117, we applied DCM to only four 
core face areas (EVC, OFA, FFA and STS). Motivated by our testing hypotheses 
(that is, the left hemisphere is feedforward whereas the right hemisphere is 
recurrent), we defined two simple models on the basis of PPI connectivity patterns 
(Fig. 4a) and tested their fitness to the observed data in each hemisphere separately. 
The feedforward model was derived from PPI left-hemisphere connectivity 
patterns (that is, face stimuli only drive feedforward processing) whereas the 
recurrent model was adapted from PPI right hemisphere patterns (that is, face 
stimuli mainly drive recurrent processing). For each model, sensory inputs 
started from EVC and all four ROIs were intrinsically set to be bidirectionally 
connected and self-connected, and their time-courses (that is, first eigenvariate) 
were extracted individually for each individual. To examine the modulatory effects 
by extrinsic face stimuli, we built a DCM GLM design matrix with six regressors 
(face, place, tool, body, 2-back and 0-back) and tested the two models with the 
face condition. To determine the optimal model, fixed-effects and random-effects 
group analyses were implemented using BMS118. Fixed-effects BMS assumes that 
the optimal model is identical across the population and uses the group Bayes 
factor (log-evidence) to quantify the relative goodness of models. By contrast, 
random-effects BMS accounts for heterogeneity of model structure across 
individuals and yields posterior model probabilities and exceedance probabilities.

Functional connectivity analysis on HCP resting-state data. rsFC between nine 
face ROIs was estimated by building nine general linear regression models. Each 
model defined the time series of one ROI as the dependent variable and the time 
series of the other eight ROIs as independent variables. For each hemisphere, 
Fisher-transformed correlation coefficients (Z-scored β-weights) were extracted 
for each pair of 9 × 9 ROIs, symmetrized and then averaged across two separate 
resting-state scans.

Comparison between different brain connectivity maps. At the individual 
level, we performed pairwise correlations among five brain connectivity 
matrices by taking all of the elements of each matrix except for the diagonal 
ones (self-connections), applying a Fisher’s Z-transform and then computing 
the Pearson correlation. Conventional one-sample t-tests (against 0) were used 
at the group level to determine the statistical significance after controlling for 
multiple comparisons. Nonparametric permutation tests (10,000 times) were also 
implemented to revalidate all of the results.

Two different scales were examined when comparing different brain 
connectivity graphs: (1) at the entire face network level (72 connections in each 
hemisphere) or (2) at the level of only three core pathways. The core pathways were 
defined to include 16 core connections in each hemisphere, EVC–OFA, OFA–FFA, 
FFA–ATL, ATL–AMG, AMG–PCC, AMG–OFC, PCC–OFC and STS–IFG, given 
that they had the highest connection probability in Fig. 1a (top 25%).

We conducted multilevel mediation analyses to test whether communicability 
mediated the relationship between SC and rsFC. Multilevel mediation analyses 
were implemented using the ‘Mixed linear model’ function in SPSS v.25 and 
the models included random intercepts at the individual level. To examine the 
mediation at the entire face network level, we first set 72 bilateral rsFC (across 
all individuals) as the dependent variable Y, 72 corresponding communicability 
measures as the mediator variable M and 72 corresponding fibre connection 
probability as the independent variable X. We next built another model for only 
core pathways, with rsFC of 16 bilateral core connections as the dependent variable 
Y, 16 corresponding communicability measures as the mediator variable M and 16 
corresponding fibre connection probabilities as the independent variable X.

Brain–behaviour associations. Two different statistical analyses were used to 
examine the brain–behaviour association—simple Pearson correlation and SVR. 
Pearson correlation was performed using SPSS v.25.0 and SVR was implemented 
using Matlab Statistics and Machine Learning Toolbox.

On the brain side, there were four independent sets of metrics: (1) neural 
activity profiles from 18 bilateral ROIs (the magnitude of BOLD responses to face 
stimuli); (2) white matter characteristics from 72 bilateral ROI–ROI connections 
and 20 major fasciculi; (3) 72 bilateral rsFC; and (4) 144 bilateral directional EC 

during the face localizer task. On the behaviour side, we had two metrics from 
the HCP Penn Emotion Recognition Test—task overall accuracy (ER40_CR) 
and median reaction time (ER40_CRT). For each SVR analysis, we built only 
one model to test the association between one particular set of brain metrics (as 
independent variables) and one behavioural measure (as the dependent variable). 
For the richness of white matter properties, we tested seven microstructural 
measures separately (that is, FA, mean diffusivity, axial diffusivity, radial diffusivity, 
streamline counts, connectivity probability and tract volume size). More details 
about the SVR procedure are provided in the caption of Fig. 6.

To further validate that the final two parsimonious models were specific to 
face processing but not predictive of general performance (for example, task 
accuracy and reaction times), we used these models to predict other HCP non-
face behavioural performance, such as the working memory 2-back task accuracy 
and speed (that is, WM_Task_2bk_Acc and WM_Task_2bk_RT), theory of mind 
judgement speed (that is, Social_Task_TOM_Median_RT_TOM) and delay-
discounting ability (that is, DDisc_AUC_200).

Hemisphere lateralization. We used a two-way repeated-measures ANOVA to 
examine hemisphere lateralization at each level of measurements. At the neural 
activation level, we set the ANOVA with factors of ‘hemisphere’ and ‘9 face ROIs’. 
At the SC (that is, connectivity probability) or rsFC level, we set the ANOVA with 
factors of ‘hemisphere’ and ‘36 ROI–ROI connections’. At the EC level, we set the 
ANOVA with factors of ‘hemisphere’ and ‘72 directional ROI–ROI connections’. 
If a main effect of hemisphere was found in the ANOVA analysis, pairwise t-tests 
were further implemented to determine the hemisphere that was dominant.

To prepare for the association analysis, we computed the streamline counts 
ratio between intrahemispheric connections and interhemispheric connections 
for each face area and then averaged the ratio across two hemispheres and across 
all of the individuals. To define the degree of lateralization of each face area, we 
computed the BOLD signal ratio between the right and left area during the face 
localizer and averaged the ratio across individuals.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data used in the present study were obtained from the WU-Minn HCP 
Consortium S900 Release. They are publicly available at https://www.
humanconnectome.org.

Code availability
Most analyses were conducted using common software (FSL, SPM) or an open 
source toolbox that can be downloaded from GitHub (Louvain community 
detection algorithm, NetworkX, or AFQ toolbox). Custom codes can be accessed at 
https://github.com/mirrorneuronwang/HCP_face_connectome and are available 
from the corresponding authors on request.
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Extended Data Fig. 1 | The Interhemispheric Fibers Connecting Bilateral Face ROIs. Probabilistic tractography indicated that bilateral posterior ROIs 

(EVC, OFA, FFA, STS and PCC) are connected through the splenium of the corpus callosum whereas bilateral frontal ROIs are connected through the genu 

(IFG) or rostrum (OFC) of the corpus callosum. Bilateral ATLs have two separate interhemispheric connections, either via the splenium of the corpus 

callosum (by climbing up posteriorly along the temploral lobe) or the anterior commissure. Each amygdala is connected to the other by the anterior 

commissure. These findings accord well with previous work on the callosal fiber organization 118, AMG/ATL interhemispheric connections 119, and EVC 

interhemispheric connections which begin at the boundary of V1 and V2 120–122. Upper row: medial views; Lower row: axial views. Abbreviations: EVC: 

early visual cortex; OFA: occipital face area; FFA: fusiform face area; ATL: anterior temporal lobe; STS: superior temporal sulcus; IFG: inferior frontal gyrus; 

AMG: amygdala; OFC: orbitofrontal cortex; PCC: posterior cingulate cortex.

NATURE HUMAN BEHAVIOUR | www.nature.com/nathumbehav



ARTICLESNATURE HUMAN BEHAVIOUR ARTICLESNATURE HUMAN BEHAVIOUR

Extended Data Fig. 2 | Additional DCM Analysis With Larger Model Space. For simplicity, we only compared two DCM models in Fig. 4. These two 

models, however, have limitations, given that they were merely built from preceding PPI results. For instance, the EVC→OFA connectivity is theoretically 

important but was not significant in the left hemisphere (LH) of PPI results (that’s why we did not included it in the original feedforward model). In 

addition, one might also be interested in exploring the relative contribution of each recurrent connection to the right hemisphere (RH) face processing.  

To address these questions, we built larger model space with seven competing models (feedforward models in red colour and recurrent ones in blue 

colour). (a) The first two models were the ones we used in Fig. 4. Model 1 was feedforward (based on of PPI results in LH) and Model 2 was recurrent 

(based on of PPI results in RH). Since Model 1 had no direct feedforward connectivity from EVC to OFA, we next built Model 3 with additional EVC→OFA. 

Model 4 to 7 were recurrent models modified from Model 2. As there were four recurrent connections in Model 2, we removed one feedback connection 

each time to examine their respective importance to the recurrent model (that is how much the model performance would suffer in the absence of 

a particular recurrent connection). Model 4 removed EVC←OFA; Model 5 removed EVC←FFA; Model 6 removed EVC←STS; and Model 7 removed 

OFA←STS. (b) Bayesian model selection (both FFX and RFX) indicates the EVC→OFA connection is important for the feedforward model, as Model 3 

performs better than Model 1 in LH. This is consistent with the Haxby model suggesting the critical role of the OFA receiving information from EVC to 

initiate the face processing. In addition, both feedforward models perform better than any recurrent models in LH, whereas the PPI-derived recurrent 

model (Model 2) performed the best in RH. These results accord well with our results in Fig. 4. Moreover, among all four recurrent connections, two 

feedback connections (EVC←OFA, OFA←STS) seem to be particularly important for RH recurrent processing, since removal of either one can lead to 

enormous drop of model performance (that is Model 4 and 7). In sum, this additional DCM analysis supports our claims in Fig. 4: the LH is dominant with 

feedforward face processing whereas the RH is dominant with recurrent processing.
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