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a b s t r a c t 

Humans have a remarkable ability to infer the mind of others. This mentalizing skill relies on a distributed network 

of brain regions but how these regions connect and interact is not well understood. Here we leveraged large- 

scale multimodal neuroimaging data to elucidate the brain-wide organization and mechanisms of mentalizing 

processing. Key connectomic features of the mentalizing network (MTN) have been delineated in exquisite detail. 

We found the structural architecture of MTN is organized by two parallel subsystems and constructed redundantly 

by local and long-range white matter fibers. We uncovered an intrinsic functional architecture that is synchronized 

according to the degree of mentalizing, and its hierarchy reflects the inherent information integration order. 

We also examined the correspondence between the structural and functional connectivity in the network and 

revealed their differences in network topology, individual variance, spatial specificity, and functional specificity. 

Finally, we scrutinized the connectome resemblance between the default mode network and MTN and elaborated 

their inherent differences in dynamic patterns, laterality, and homogeneity. Overall, our study demonstrates that 

mentalizing processing unfolds across functionally heterogeneous regions with highly structured fiber tracts and 

unique hierarchical functional architecture, which make it distinguishable from the default mode network and 

other vicinity brain networks supporting autobiographical memory, semantic memory, self-referential, moral 

reasoning, and mental time travel. 
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Understanding other people’s intentions, feelings, beliefs, and traits
s a pivotal component of human social cognition ( Frith and Frith, 2006 ).
his ability is referred to as mentalizing, mindreading, or theory of mind
ToM) ( Schaafsma et al., 2015 ). Mentalizing is crucial for successful nav-
gation of the social world, as it allows us to predict, explain, and ma-
ipulate each other’s behavior. Atypical mentalizing undermines one’s
nterpersonal communication, social competence, and overall quality of
ife ( Frith, 2001 ). 

Given its significance for social living, considerable efforts have
een made to understand the neural basis of mentalizing ( Frith and
rith, 2006 , Saxe, 2010 , Mahy et al., 2014 ). Existing literature sug-
ests that mentalizing is supported by a widely distributed network
f brain regions termed the ‘mentalizing network’ (MTN). The MTN
ncludes the temporoparietal junction (TPJ), precuneus (PreC), ante-
ior temporal lobes (ATL), dorsomedial prefrontal cortex (DMPFC), and
entromedial prefrontal cortex (VMPFC). The TPJ is believed to be
esponsible for attributing other’s transient mental states (e.g. instant
oals, thoughts, and feelings) ( Van Overwalle, 2009 , Koster-hale and
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axe, 2013 ) whereas the DMPFC is thought to be involved in reason-
ng about other’s enduring traits (e.g. stable attitudes, preferences, and
ispositions) ( Van Overwalle, 2009 , Van Overwalle and Baetens, 2009 ,
an Overwalle and Vandekerckhove, 2013 , Schurz and Perner, 2015 ).
he PreC has been associated with mental imagery that is necessary for
erspective taking (e.g. online mental simulation of how a person thinks,
cts or behaves in fictitious situations) ( Schurz et al., 2014 , Uddin et al.,
007 , Peer et al., 2015 , Cavanna and Trimble, 2006 ) and portions of
he ATL have been shown to be a repository for semantic knowledge
elated to persons, social concepts, and social scripts ( Wang et al.,
017 , Ross and Olson, 2010 ). Lastly, the VMPFC has been suggested
o represent emotional and motivational components of social reason-
ng (e.g. linking valence to particular persons, their actions, and their
houghts) and exert top-down affective prediction ( Molenberghs et al.,
016 , Koster-Hale et al., 2017 , Barrett and Bar, 2009 ). While the pre-
ise function of each region is still debated ( Schurz and Perner, 2015 ,
churz et al., 2014 ), they are consistently and reliably recruited for
entalizing, regardless of the task and stimulus formats ( Van Over-
alle and Baetens, 2009 , Schurz et al., 2014 , Molenberghs et al., 2016 ,
ar, 2011 ). 
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Although the functional specialization of single mentalizing area
e.g., TPJ) has been studied intensively, little is known about how these
reas are structurally connected and functionally interact (i.e., the men-
alizing connectome). One cause of this gap in knowledge can be as-
ribed to the seminal discovery of the default mode network (DMN)
 Raichle et al., 2001 ). This prominent brain network has become the
rimary focus in network neuroscience for years and numerous stud-
es have been carried out to elucidate its anatomy, physiology, func-
ions, and network properties ( Buckner and DiNicola, 2019 ). Since
he MTN shows considerable spatial overlaps with the core system of
MN ( Buckner et al., 2008 , Schilbach et al., 2008 , Spreng et al., 2009 ,
ars et al., 2012 , Amft et al., 2015 , Spreng and Andrews-Hanna, 2015 ,

i et al., 2014 ), many researchers have attempted to assign the DMN’s
ell-known network properties to the MTN. However, this assumption
f ‘connectome resemblance’ has not been systematically investigated
nd validated. In addition, besides mentalizing, the DMN also shares
he same set of brain regions with other cognitive functions such as
he autobiographical memory ( Spreng et al., 2009 ), moral reasoning
 Buckner et al., 2008 ), self-referential processing ( Uddin et al., 2007 ,
usnard et al., 2001 ), mental time travel (i.e. remembering the past and

magining the future) ( Peer et al., 2015 , Schacter et al., 2012 ), and se-
antic memory ( Binder et al., 2009 , Binder and Desai, 2011 , Spreng and
ar, 2012 ). It is unknown how mentalizing and these seemingly unre-

ated functions co-exist in the vicinity (neighborhood) of the DMN and
ow differently each network is structurally organized and functionally
perated. 

In the present study, we aimed to elucidate and elaborate the full
rofile of brain connectivity in MTN, such as its network topology, fiber
omposition, spatial specificity, individual variance, hemispheric pref-
rence, structure-function relations, and brain-behavior associations.
ore importantly, we scrutinized the connectome-level resemblance

etween the MTN, DMN, and other DMN-vicinity networks. We used
he human connectome project (HCP) dataset because it provides a
arge sample size (n = 672) and high quality multimodal neuroimag-
ng data ( Van Essen et al., 2013 ). Due to the heterogeneous nature of
ortical areas the MTN encompasses, we functionally defined five bilat-
ral mentalizing regions in each participant (i.e., subject-specific MTN
OIs) using ToM tasks, then used tractography to delineate local and

ong-range white matter connections. We also investigated functional
nd dynamical properties of this network using resting-state and task-
tate functional datasets. Finally, we identified the nodes of DMN and
ther functional networks using both meta-analytic and data-driven ap-
roaches, and performed analogous tractography and connectivity anal-
ses to compare their connectome characteristics with MTN’s. 

esults 

tructural Connectome 

Using probabilistic diffusion tractography techniques ( Behrens et al.,
007 ), we first delineated inter-regional connections between mentaliz-
ng areas. Structural connection strength is often interpreted as a mea-
ure of capacity for information flow and provides valuable insights
bout underlying pathways through which neural signals propagate
ithin the network ( Avena-Koenigsberger et al., 2017 ). Here, we re-

onstructed ten pairwise connections between five mentalizing areas
n each hemisphere and characterized the underlying architecture us-
ng community detection and hierarchical clustering analysis. We found
he organization of structural connectivity (SC) can be divided into two
artitions: a lateral subsystem (TPJ-ATL) and a medial subsystem (PreC-
MPFC-VMPFC) ( Fig 1 ). 

Next, we investigated the white matter composition of the MTN by
issecting its constituent fiber tracts. A small number of long-range
racts have been repeatedly reported in the literature and disruption
f these tracts can lead to ToM impairments ( Wang et al., 2018 ). Le-
ion samples are naturally heterogeneous, including individuals with
2 
mall and large lesions, as well as lesions that destroy differing amounts
f gray matter and white matter. Thus, it is important to extend this
ine of research to a neurologically normal sample and investigate at
 higher granularity (i.e. quantify the fiber composition of each MTN
onnection). Here we used an automatic fiber reconstruction technique
 Yeatman et al., 2012 ) to delineate ten major fasciculi for each sub-
ect and compared them with the ROI-ROI tracts at the individual level.
y calculating the degree of their overlapped trajectories, we can esti-
ate the involvement of major fasciculi in the mentalizing connectome.

n agreement with prior meta-analysis ( Wang et al., 2018 ), our results
evealed five major fasciculi ( Fig 2 A). Specifically, precuneus-related
onnections were primarily constructed by the cingulum bundle (CING,
.g. PreC-DMPFC, 37 ± 19%, (mean ± SD)); ATL-related connections
ere mainly supported by the inferior longitudinal fasciculus (ILF, e.g.
TL-TPJ:37 ± 16%, ATL-PreC:31 ± 12%); TPJ-related connections were

argely overlapped with the superior longitudinal fasciculus and arcu-
te fasciculus (SLF/AF, e.g. TPJ-DMPFC: 20 ± 10%), and VMPFC-related
onnections were mainly mediated by the inferior fronto-occipital fas-
iculus (IFOF, e.g. VMPFC-TPJ: 29 ± 13%) and uncinate fasciculus (UF,
.g. VMPFC-ATL: 28 ± 16%). As a whole, the medial subsystem appears
o be solely subserved by the cingulum bundle, whereas the lateral sub-
ystem is supported by multiple white matter bundles (ILF and SLF/AF),
nd the two subsystems are linked by the UF, IFOF, and SLF/AF. 

Since only a small proportion of the connectome can be attributed
o long-range fasciculi in deep white matter (e.g. the highest percent-
ge in Fig 2 A was 37%), we directed our attention to another impor-
ant class of white matter —short-range superficial fibers (also called U-
haped fibers). Tracer studies have demonstrated that long-range fibers
omprise only a minority of the whole brain connectome with the ma-
ority consisting of short association fibers that lie immediately beneath
he gray matter, connecting adjacent gyri ( Schuz and Braitenberg, 2002 ,

andell, 2016 ). By projecting all ROI-ROI connections over two stan-
ard white matter atlases of long-range ( Mori et al., 2008 ) and short-
ange fibers ( Guevara et al., 2017 ), we interrogated the relative contri-
ution of the two white matter systems for the mentalizing connectome.
hile only 37.64% of the connectome can be labelled by the fasciculi

n the long-range white matter atlas, more than 77.02% of the ROI-
OI connections were classified as short-range fibers ( Fig 2 B). More-
ver, we found each ROI-ROI connection was supported redundantly by
oth types of fibers but that the short-range ones were more involved
han the long-range ones. 

unctional Connectome 

To fully capture and understand how mentalizing areas interact with
ach other, we examined their inter-regional functional connectivity
FC) across different brain states and tasks. The HCP dataset provides
ultiple in-scanner cognitive tasks requiring different degrees of men-

alizing. For example, the HCP ToM task explicitly asks subjects to imple-
ent mental state attribution when watching Heider and Simmel-type

ocial animations. The HCP emotion task requires subjects to recognize
nd understand the emotions displayed in facial expressions and thus
licits implicit mentalizing ( Van Overwalle and Vandekerckhove, 2013 ,
liemann and Adolphs, 2018 ). Lastly, the HCP motor task asks sub-

ects to execute simple body movements (fingers, toes, or tongues) and
hereby entails no mentalizing. As showed in Fig 3 A, we found highly
imilar FC topological patterns across three HCP task categories (all
earson’s rs > 0.342; t-tests: ts > 26.85, p s < 0.001, see details of pair-
ise pattern similarities between task categories in Supplementary Ta-
le 2a), suggesting the existence of an ‘intrinsic’ coherent functional
rchitecture that is constantly active and synchronized across contexts
 Smith et al., 2009 , Cole et al., 2014 , Krienen et al., 2014 ). This intrinsic
etwork architecture was also confirmed by using the HCP resting state
ata ( Fig 3 B). Moreover, the strength of FC seems to depend on the cog-
itive state, with elevated FC when the task requires more mentalizing
i.e., motor-state FC < emotion-state FC < ToM-state FC). Statistical test-
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Fig. 1. Structural Connectome of the MTN. (A) The pairwise connec- 

tion strength (that is, connectivity probability) between five MTN ROIs 

was plotted in wiring diagrams (top) and weighted matrices (middle). 

The width of each line in the wiring diagrams (or the heat color in 

the matrices) proportionally reflects the mean connectivity probability 

across all individuals. The landscape of structural connectivity maps 

clearly indicated two partitions: a medial subsystem (PreC-DMPFC- 

VMPFC) and a lateral subsystem (TPJ-ATL). Further analyses using com- 

munity detection algorithm (B) and hierarchical clustering algorithm 

(C) confirmed this medial-lateral division. Highly similar connectiv- 

ity patterns and partitions were also obtained when using another SC 

measure (fiber count maps) (i.e. correlations between these two maps 

in LH: r(10) = 0.995, p < 0.001, 95% CI: 0.916, 1.074; and in RH: 

r(10) = 0.996, p < 0.001, 95% CI: 0.923, 1.069). 
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ng using multilevel modeling analysis further confirmed this effect by
howing that all ten pairwise FCs in MTN followed the same trend, that
s, the degree of mentalizing required by a task significantly predicted
he strength of FC elicited by that task category (Supplementary Table
b). To further validate its specificity to the MTN, we applied analo-
ous cross-tasks FC analyses to another brain network (i.e., the DMN)
ut found no such progressive effect (Supplementary Fig 6). It should be
oted that we were not able to directly compare the size of FCs between
he resting-state and three task-states as they had substantial differences
n scan length. 

Next, we investigated the organization of the intrinsic functional ar-
hitecture, as it can provide insights about how information is func-
ionally integrated within the MTN. Only one unified community was
etected (i.e., no modularity), which is different from the two parallel
ubsystems we found in the SC analysis. Hierarchical clustering analysis,
owever, identified a consistent functional hierarchy across all resting
nd task FC maps —with TPJ and PreC as the lowest level and VMPFC
s the highest level (see Supplementary Fig 3B). This organization im-
lies a serial-hierarchical functional architecture in which information
ntegrates from posterior MTN ROIs to anterior ROIs and corresponds
ell with the literature on the functional role of each mentalizing area
 Schurz et al., 2014 ). 

As FC only expresses statistical dependencies (i.e. non-directional
orrelations) among time courses of different brain areas ( Avena-
oenigsberger et al., 2017 ), we also examined the effective connectiv-

ty (EC) which allows us to capture stimulus-driven patterns of direc-
ional influence among mentalizing areas ( Friston, 2011 ). Psychophysi-
logical interaction (PPI) analyses build simple static models of EC be-
3 
ween one or more brain regions and allow researchers to explore di-
ected changes in connectivity by establishing a significant interaction
etween the seed region and the psychological context ( Friston, 2011 ,
mith et al., 2016 , Gerchen et al., 2014 ). Our PPI analyses revealed
mbalanced information processing across the hemispheres, with much
tronger task-modulated brain dynamics in the right hemisphere than
he left hemisphere ( Fig 3 C). In addition, the precuneus in the right
emisphere was found to be only engaged in feed-forward processing,
hereas other mentalizing areas had both feed-forward and feed-back
C during social mentalizing. 

onnectome Features: Individual Variance 

Previous studies showed striking individual differences in ToM task
erformance ( Hughes et al., 2005 , Herbort et al., 2016 , Conway et al.,
019 ). Here we examined whether such variance can be observed in
he connectome. To reveal the distribution of group-to-individual sim-
larity across all subjects, we conducted correlation analyses between
roup-averaged maps and subject-specific maps for each type of brain
onnectivity measure (see histograms and stats in Supplementary Fig
A). Results suggested that group-averaged matrices were strongly cor-
elated with subject-specific matrices for SC, rsFC and ToM-state FC (all
ean rs > 0.424; ts > 35.33, ps < 0.001, n = 672) and majority of subjects

 > 52.3%) exhibited highly similar maps (r > 0.5) as the group-averaged
nes. The group-averaged EC matrices, however, showed mild correla-
ion with subject-specific EC matrices (all mean rs > 0.136; ts > 9.67,
s < 0.001, n = 672) and most subjects ( > 57.2%) exhibited small corre-
ation (r > 0.1) with the group-averaged ones. 



Y. Wang, A. Metoki, Y. Xia et al. NeuroImage 236 (2021) 118115 

Fig. 2. White Matter Composition of the MTN. (A) Top five major fasciculi that overlap mostly with the mentalizing connectome. Each percentage number in the 

matrices represents the mean overlapped volumes between an ROI-ROI connection and a major fasciculus across all subjects. Taking the TPJ-VMPFC connection as 

an example, 29% voxels of the tract overlapped with the IFOF and 19% overlapped with the ILF; the tract did not overlap with the cingulum (0%) and had small 

portion with the SLF (13%) and uncinate (14%). (B) The relative contribution of large-range and short-range fibers to the mentalizing connectome. After overlaying 

all ROI-ROI connections onto two standard white matter atlases, we found ~77% of the MTN connectome can be classified as short-range fibers whereas only ~38% 

can be labelled as long-range fibers. For each ROI-ROI connection, the numbers in the matrices represent how well it can be explained by the tracts in each atlas. 

Taking the TPJ-VMPFC connection as an example, 33% of its voxels overlapped with long-range tracts in the JHU atlas whereas 60% of voxels overlapped with 

superficial tracts in the LNAO atlas. Note that human white matter is somewhat idiosyncratic across individuals and the two standard atlases only represent the 

skeleton of the most common white matter fibers in standard MNI space. Since they were created by different research groups with different methods, the two atlases 

are not mutually exclusive, and their combination does not always explain all connectome voxels (e.g. the sum of PreC-ATL by two atlases is only 55%). All numbers 

here were averaged across two hemispheres (see Supplementary Fig 1 for details). 
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Next, we used two cross-validation schemes to further probe
ubgroup-to-subgroup and group-to-individual similarity, that is, the
plit-half cross-validation (using 50% subjects’ matrices to predict the
ther 50% subjects’ matrices) and the leave-one-out cross-validation (us-
ng N-1 subjects’ matrices to predict a new subject’s matrices) (see Sup-
lementary Fig 2B). Again, both methods revealed high train-test corre-
ation for SC, rsFC and ToM-state FC (all mean rs > 0.419; ts > 35.08,
s < 0.001, n = 1000/672) and relatively small train-test correlation
or the EC (all mean rs > 0.124; ts > 9.55, ps < 0.001, n = 1000/672).
aken together, the brain connectivity in MTN was found to be homo-
eneous across subjects, with large homogeneity in SC, medium in FC,
nd small in EC. Thus, our reported group-averaged matrices indeed re-
ect most individuals’ connectivity patterns. We also compared the in-
ividual variance of MTN with other brain networks and found weaker
roup-to-individual similarity in MTN than the DMN (Supplementary
able 6) and the face processing network ( Wang et al., 2020 ) for all
rain connectivity types. This suggests that MTN is relatively a more
eterogeneous network. 
4 
onnectome Features: Spatial Specificity 

To explore how connectivity patterns are spread and changed in
pace, we performed analogous tractography and connectivity analy-
es while manipulating the methods of ROI location selection. Past re-
earch has documented three different ways to define the spatial loca-
ion of ROIs, either using subject-specific coordinates from a functional
ocalizer, or group-level peak activation from a task, or putative coor-
inates from meta-analyses ( Poldrack, 2007 , Saxe et al., 2006 ). Here
e examined how these precise or liberal methods impact MTN con-
ectivity maps. In addition, since remarkable individual variability has
lready been observed in our subject-specific coordinates (see black
ots in brain images in Fig 4 ), we also examined how shuffling subject-
pecific ROIs across subjects (so that the TPJ coordinates of subject A
ecame the TPJ coordinates of subject B) alters connectivity maps. The
esults revealed that the functional connectome (rsFC, ToM-state FC and
C) was very susceptible to ROI selection whereas the structural connec-
ome remained stable across all location manipulations ( Fig 4 ). Although



Y. Wang, A. Metoki, Y. Xia et al. NeuroImage 236 (2021) 118115 

Fig. 3. Functional Connectome of the Mentalizing Network. (A) Functional connectivity (FC) in MTN across different cognitive tasks. We selected three HCP tasks 

with different degrees of mentalizing: the motor (no mentalizing), emotion (implicit mentalizing), and ToM task (intentional mentalizing). We found similar FC 

topological patterns across tasks, with high FC consistently in TPJ-related and DMPFC-related connections. Intriguingly, coactivations among mentalizing areas were 

dependent on the degree of mentalizing required in the task: when there were increased mentalizing demands, FC increased gradually from the motor-state, emotion- 

state, to ToM-state task. We only show the right hemisphere matrices here, but the left side had the same effect. (B) FCs among MTN areas in the resting state. Note 

that the topological patterns in resting state were highly similar with three HCP tasks, indicating the existence of an ‘intrinsic’ coherent functional architecture that is 

constantly synchronized across brain states. (C) Effective connectivity during the HCP ToM task. PPI matrices for each hemisphere were showed in the middle (seed 

regions in y-axis and target regions in x-axis; asterisks indicate statistically significance) and an illustration of directional information flow summarized from the 

matrices were added on two sides (arrow line width was scaled to reflect the EC strength). The two hemispheres exhibited entirely different EC patterns, with much 

stronger task-modulated dynamics in the right hemisphere. For the right hemisphere, the precuneus was identified with only feed-forward information cascades 

(the dashed box indicates the non-significant feed-back processing toward precuneus), whereas other four mentalizing areas implicate recurrent processing during 

mentalizing. We did not find any significant EC among MTN ROIs in the HCP motor or emotion task. 
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onnectivity maps using liberal methods were still statistically corre-
ated with the original subject-specific maps (SC: all mean rs > 0.62,
s > 72.75, ps < 0.001; rsFC: all mean rs > 0.24, ts > 5.50, ps < 0.001;
oM-state FC: all mean rs > 0.21, ts > 5.34, ps < 0.001; EC: all mean
s > 0.08, ts > 2.49, ps < 0.013), fine-grained connectivity patterns was
nly preserved in SC but systematically changed in rsFC, ToM-state FC
nd EC. Of most interest, adopting more liberal methods generated con-
ectivity maps that were more dissimilar to the original subject-specific
nes ( Fig 4 ), as pattern similarity decreased substantially from methods
sing group-level peak activation, to methods using Neurosynth coordi-
ates, and to methods using shuffled coordinates (i.e. the drop of Pear-
on’s r in SC (0.70 →0.65 →0.62), rsFC (0.34 →0.26 →0.24), ToM-state
C (0.34 →0.28 →0.21), EC (0.11 →0.09 →0.08)). Overall, these findings
rovide preliminary evidence of high spatial specificity in the functional
onnectome but low spatial specificity in the structural connectome. 

onnectome Features: Functional Specificity 

The MTN shares similar nodes with the core system of DMN as well
s other functional networks in the vicinity of DMN (i.e. autobiograph-
cal memory, moral reasoning, self-reference, mental time travel, and
emantic memory) ( Uddin et al., 2007 , Buckner et al., 2008 , Binder and
esai, 2011 ). Here we defined these networks by using their Neurosynth
oordinates (see Supplementary Table 4) and performed analogous con-
ectivity analyses to reveal their connectome resemblance with the MTN
 Fig 5 and Supplementary Fig 4). We found the MTN had highly similar
C patterns with the DMN and nearby networks (all mean rs > 0.47,
s > 12.60, ps < 0.001) and they were all organized by the same struc-
ural architecture (‘lateral vs medial’ subnetworks) except the semantic
emory network ( Fig 5 ). This is consistent with our results in the spa-

ial specificity analysis showing that the SC was configured as relatively
table across spatial extent. For FC (rsFC and ToM-state FC), despite
5 
he significant global correlations between the MTN, DMN and nearby
etworks (all mean rs > 0.15, ts > 5.82, ps < 0.001), they all exhib-
ted distinct local connectivity fingerprints ( Fig 5 ) and different network
roperties (Supplementary Table 5). For EC, even the global pattern
orrespondence did not exist among all networks (all mean rs < 0.07,
s < 1.77, ps > 0.077), let alone their disparate fine-grained connectivity
ngerprints. Therefore, our results revealed that all DMN-vicinity net-
orks share a similar anatomical architecture (fiber bundles) but own
istinguishable functional and dynamic characteristics (in particular the
C). 

To complement our meta-analytic approach that imperfectly as-
umed all subjects had the same DMN node locations (i.e., Neurosynth),
e also validated the findings by adopting a data-driven method (i.e.

patial ICA) to identify subject-specific DMN ( Calhoun et al., 2001 ). A
imilar relationship was observed between personalized MTN and per-
onalized DMN (i.e., similar SC but dissimilar FC and EC; see Supplemen-
ary Fig 5). Unfortunately, the HCP dataset was not allowed to derive
ubject-specific DMN-vicinity networks (i.e., no functional localizer was
rovided for related cognitive functions). 

onnectome Features: Lateralization, Structure-Functional Relation, and 

rain-Behavior Association 

Our original plans did not include conducting a laterality analysis.
owever, since the PPI analyses showed remarkably unbalanced task-
odulated connectivity dynamics across two hemispheres, we subse-

uently examined hemispheric lateralization at all levels of the con-
ectome. Repeated-measure ANOVA revealed a significant main ef-
ect of hemispheric asymmetry in task-evoked BOLD response in men-
alizing ROIs (F(1,671) = 109.45, p < 0.001, 𝜂2 = 0.582) and EC
F(1,671) = 39.74, p < 0.001, 𝜂2 = 0.056). Despite the absence of a main
ffect of hemispheric asymmetry, we found that a significant interaction
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Fig. 4. The Spatial Specificity of the Mentalizing Connectome. Brain connectivity patterns were measured and compared across four different ways of ROI selection. 

We originally defined each mentalizing ROI by using subject-specific coordinates from the functional ToM localizer. The black dots in left-side brain images showed 

the massive individual variability within each node (spatial distributions in TPJ (14 mm), ATL (13 mm), PreC (12 mm), DMPFC (11 mm), and VMPFC (11 mm)). The 

major findings in this article came from this method (black frames). We then adopted two more liberal ways to define ROI locations, by choosing either group-level 

peak activation sites from the functional ToM localizer (red dots and frames) or putative coordinates from Neurosynth database (blue dots and frames). Lastly, we 

permuted subject-specific ROI locations across subjects (e.g. subject A’s DMPFC coordinates now became subject B’s) and defined ROIs with shuffled coordinates 

(green frames). We found the functional connectome (rsFC, ToM-state FC and EC) was very susceptible to spatial location changes because all fine-grained patterns in 

the original subject-specific maps were substantially altered, whereas the SC maps remained stable after location manipulations and they were all highly correlated 

with original subject-specific maps (all mean rs > 0.6). Critically, the more liberally one chose to define ROIs (red →blue →green), the maps were more dissimilar to the 

original subject-specific maps. This emphasizes the importance of precise ROI definition when studying fine-grained connectivity fingerprints in MTN. For simplicity, 

we only provided the connectivity maps in the right hemisphere here but the results were very similar in the left hemisphere. Asterisks indicate statistical significance 

( p < 0.05). Abbreviations: T = Temporo-parietal junction (TPJ); A = Anterior Temporal Lobe (ATL); P = Precuneus (PreC); D = Dorsal Medial Prefrontal Cortex (DMPFC); 

V = Ventral Medial Prefrontal Cortex (VMPFC). 
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etween hemispheric asymmetry and pairwise connections existed in SC
F(9,6039) = 11.05, p < 0.001, 𝜂2 = 0.016), rsFC (F(9,6039) = 4.53,
 < 0.001, 𝜂2 = 0.007) and ToM-state FC (F(9,6039) = 4.91, p < 0.001,
2 = 0.007). This interaction suggests that different pairwise connec-
ions might have different directions of lateralization. Post-hoc t-tests
urther revealed that most asymmetrical connections were right lateral-
zed, indicating that the MTN is a right hemisphere dominated network
see Supplementary Table 3a). In contrast, the DMN appears to be left
emisphere dominated. Repeated-measure ANOVA revealed significant
ain effect of hemispheric asymmetry in DMN’s SC (F(1,671) = 549.40,
 < 0.001, 𝜂2 = 0.450) and rsFC (F(1,671) = 670.38, p < 0.001,
2 = 0.500) and most asymmetrical connections were left lateralized
see Supplementary Table 3b) 

We also examined the structure-function relationship within the
TN (Supplementary Fig. 3). Across the entire network, SC and FC were

lobally correlated with each other (right SC & rsFC: mean r = 0.200,
(671) = 16.78, p < 0.001, d = 0.65, 95% CI: 0.177, 0.223; right SC &
oM-state FC: mean r = 0.170, t(671) = 14.56, p < 0.001, d = 0.56,
5% CI: 0.147, 0.193; left SC & rsFC: mean r = 0.170, t(671) = 13.80,
 < 0.001, d = 0.53, 95% CI: 0.146, 0.195; SC & left ToM-state FC: mean
 = 0.168, t(671) = 14.39, p < 0.001, d = 0.56, 95% CI: 0.145, 0.191).
his supports the idea that FC is generally dictated by the underlying
hite matter ( Avena-Koenigsberger et al., 2017 , Honey et al., 2009 ).
owever, when inspecting each connection, we found SC and FC did not
lways correspond at a fine-scale. For example, TPJ had strong FC with
reC and DMPFC but exhibited weak SC with both areas (Supplementary
ig 3A). These disagreements suggest that FC is a good but imperfect rep-
6 
esentation of the underlying SC ( Tyszka et al., 2011 , Wang et al., 2020 ).
n addition, EC maps were found to be neither similar to SC (EC & SC:
ean r = 0.009, t(671) = 0.74, p = 0.459, d = 0.03, 95% CI: -0.014,
.031) nor FCs (EC & rsFC: mean r = 0.024, t(671) = 1.81, p = 0.071,
 = 0.07, 95% CI: -0.002, 0.050; EC & ToM-state FC: mean r = 0.022,
(671) = 1.64, p = 0.102, d = 0.06, 95% CI: -0.004, 0.049), owing to
ts nature of reflecting asymmetrical and directional information pro-
essing during mentalizing. Finally, hierarchical clustering and graph
heory analysis uncovered more organizational differences between SC
nd FC: while the structural architecture of MTN is configured by two
arallel subsystems with one hub (PreC), the functional architecture is
rganized by a serial-hierarchical structure with two functional hubs
TPJ and PreC) (Supplementary Fig 3B and Table 5). Overall, we found
he SC and FC in MTN were tightly linked but each had their own unique
roperties. 

Finally, we explored if any connectome features were associated with
ndividual’s ToM task performance. Pearson correlations revealed that
ccuracy on the HCP ToM task was significantly correlated with neural
esponses in bilateral TPJ (right TPJ: r(672) = 0.134, p < 0.001, 95%
I: 0.059, 0.209; left TPJ: r(672) = 0.184, p < 0.001, 95% CI: 0.109,
.258), bilateral ATL (right ATL: r(672) = 0.159, p < 0.001, 95% CI:
.084, 0.234; left ATL: r(672) = 0.126, p = 0.003, 95% CI: 0.050, 0.201),
nd bilateral DMPFC (right DMPFC: r(672) = 0.097, p = 0.020, 95% CI:
.021, 0.172; left DMPFC: r(672) = 0.120, p = 0.004, 95% CI: 0.045,
.195). While the task accuracy cannot be predicted by any features of
C (all rs < 0.085, ps > 0.280), rsFC (all rs < 0.106, ps > 0.080) and ToM-
tate FC (all rs < 0.105, ps > 0.075), it was significantly associated with
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Fig. 5. Brain connectivity similarity between mentalizing network, default-mode network, and other nearby functional networks. Brain connectivity patterns were 

measured and compared across seven DMN-vicinity networks (node locations are depicted in different colors). The MTN was defined using subjects-specific coordinates 

from the HCP ToM task. Six other networks were defined using coordinates from Neurosynth (DMN, autobiographical memory, self-referential, moral reasoning, 

semantic memory) or meta-analysis (mental time travel) (see search keyword and specific coordinates in Supplementary Table 4). Tractography analyses (upper left 

panel) revealed highly similar SC patterns between all networks (all mean rs > 0.47, ps < 0.001) and they (except semantic memory) were all organized by the same 

architecture with two subsystems (i.e. medial vs lateral). For resting-state and ToM-state FC (two lower panels), the global pattern of all networks was statistically 

correlated (all mean rs > 0.15, ps < 0.001) but each showed distinct local fine-grained FC. For EC (upper right panel), all networks exhibited different global 

and fine-grained patterns (correlations were all insignificant, rs < 0.007, ps > 0.77), indicating that each DMN-vicinity network had unique dynamic connectivity 

properties. Asterisks indicate statistical significance ( p < 0.05). Abbreviations: T = Temporo-parietal junction (TPJ); A = Anterior Temporal Lobe (ATL); P = Precuneus 

(PreC); D = Dorsal Medial Prefrontal Cortex (DMPFC); V = Ventral Medial Prefrontal Cortex (VMPFC). 
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hree connections in EC: right ATL →TPJ (r(672) = 0.136, p < 0.001, 95%
I: 0.061, 0.211), right TPJ →ATL (r(672) = 0.108, p = 0.044, 95% CI:
.033, 0.184), and right DMPFC →TPJ (r(672) = 0.121, p = 0.040, 95%
I: 0.046, 0.196). These findings highlight the usefulness of dynamic
roperties of the connectome (i.e. local task-evoked responses in right
TL and TPJ as well as their task-modulated connectivity dynamics)

n explaining individual variance of mentalizing skills, whereas those
table connectome features reflecting intrinsic architecture (i.e. SC and
C) cannot. No brain features were found to correlate with the ToM task
peed (all |rs| < 0.086; all ps > 0.078). 

iscussion 

The neural basis of theory of mind has been investigated for more
han 25 years ( Baron-Cohen et al., 1994 ). While much work has focused
7 
n the functional segregation in the MTN (i.e., specific function operated
y single mentalizing area) ( Schurz et al., 2014 ), the connectome-level
rganization and brain-wide mechanisms for functional integration of
entalizing processing remains poorly understood. New trends in con-
ectomics suggest that the function of any mentalizing areas should be
onsidered using an integrative approach, including not only patterns
evealed by local properties, but also connectivity and dynamics with
ther mentalizing areas ( Genon et al., 2018 ). Prior connectivity stud-
es on MTN, however, were methodologically limited by small sample
ize ( Atique et al., 2011 , Cabinio et al., 2015 , Sokolov et al., 2018 ),
he examination of only partial connectomes ( Hillebrandt et al., 2015 ),
on-multimodal approaches that neglected white matter connectivity
 Wang et al., 2018 ), or a restricted focus on atypical groups such as in-
ividuals with clinical disorders ( Wang et al., 2018 , Richardson et al.,
018 , Yang and Lee, 2018 ). On the other hand, network neuroscience
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raditionally uses large multimodal data to characterize the entire hu-
an connectome or large-scale domain-general networks (e.g. DMN,

alience network, frontoparietal control network) but pays less attention
o functionally specialized networks with small numbers of nodes and
dges. The present study bridges these two domains by elucidating the
ull profile of brain connectivity in the MTN in exquisite detail and by
ystematically assessing the relationship between domain-general and
omain-specific brain networks (DMN vs. MTN). For overall readability
nd accessibility, all methods, analyses and findings in the present study
re summarized in Supplementary Table 7. 

First, we investigated the anatomical architecture of MTN. We found
hat the “wiring system ” – fiber tracts - was characterized by two sep-
rate partitions: a lateral subsystem consisting of the TPJ-ATL and a
edial subsystem consisting of the PreC-DMPFC-VMPFC. There are mul-

iple ways to understand this medial-lateral configuration. It has been
ell-documented that cortical midline areas support self-representation
nd self-processing ( Uddin et al., 2007 , D’Argembeau et al., 2007 ,
amir and Mitchell, 2010 , Feng et al., 2018 ) whereas lateral areas
re involved in retrieving knowledge about other entities (e.g., ATL)
 Wang et al., 2017 , Olson et al., 2013 ) and reasoning about others’ per-
pectives (e.g. TPJ) ( Schurz et al., 2014 , Saxe et al., 2006 ). Given that
eta-representation (i.e., simultaneous representation of one’s own and

ther’s mental states) and decoupling (i.e., self-other distinction) are
uch essential ingredients for mentalizing, the medial and lateral sub-
ystem may subserve separate pathways for self (egocentric) and other
altercentric) processing. Another interpretation is that these two sub-
ystems might be recruited for different types of ToM inference. It has
een reported that lateral regions (e.g., TPJ) are recruited more by stim-
li and tasks requiring reasoning about others’ beliefs and intentions
epistemic or “cognitive ” ToM) while medial regions (e.g., VMPFC) are
ecruited more by inferences about emotions and preferences (motiva-
ional or “affective ” ToM) ( Koster-Hale et al., 2017 ). Note that it is im-
ortant to consider whether this partition is a misleading by-product
rom the limited tractography technique, since fiber tracking algorithms
o not work well when they have to travel through deep white matter
rom a lateral to medial direction. Future research should test these ideas
o clarify the cognitive function of each MTN subsystem. 

Second, we examined the white matter composition of the MTN at a
igh granularity level. We found that local U-shaped fibers play a dispro-
ortionate role in the scaffold of the MTN. Based on a recent literature
eview ( Wang et al., 2018 ), five long-range fiber bundles —the cingu-
um, SLF, UF, IFOF and ILF —are the most frequently reported tracts as-
ociated with theory of mind; in contrast, local white matter was rarely
entioned. In addition, since most MTN ROIs are spatially far apart (e.g.
0% connections had Euclidian distance > 70mm), long-range fibers
ould be expected to play the primary role in interregional connec-

ions. However, our results suggest that long-range fiber bundles only
ccount for 38% of the connectome, whereas short-range fibers support
ost ROI-ROI connections. This observation is consistent with older his-

ology studies showing that the human cerebral white matter is domi-
ated by short-range fibers that connect adjacent gyri ( Schuz and Brait-
nberg, 2002 ) and complies well with the ‘small-world’ characteristic of
rain networks ( Bassett and Bullmore, 2017 ). It is believed that abun-
ant short-range fibers serve to adaptively minimize global wiring costs,
hereas sparse long-range connections contribute to functional integra-

ion ( Betzel and Bassett, 2018 , Bullmore and Sporns, 2009 ). Our analysis
evealed that most ROI-ROI connections were redundantly constructed
y both types of fibers ( Fig. 2 B). For example, the TPJ and DMPFC are
irectly linked by major fasciculi, but they are also connected indirectly
y local U-shaped fibers via multiple-hop-relays. A redundant wiring
cheme can provide resiliency in the case of brain injury or disease,
hich may explain why ToM impairments are rare ( Wang et al., 2018 ).
long with recent similar findings on the face network and mirroring
etwork ( Wang et al., 2018 , Wang et al., 2020 ), we argue that these
wo features of the MTN white matter configuration —disproportionate
ocal connectivity and redundant connections —commonly exist in so-
8 
ial brain networks. Whether there are abnormalities in the amount or
onfiguration of U-shaped fibers in individuals with autism spectrum
isorder is not known but should be seriously examined in future re-
earch ( D’Albis et al., 2018 , Hong et al., 2019 ). 

Third, we obtained a detailed and comprehensive picture of func-
ional connectivity in the MTN. By examining coactivations across tasks
hat differentially tap ToM, we revealed an ‘intrinsic’ functional ar-
hitecture that is constantly active and synchronized across contexts
 Fig 3 A). The coherence of this functional architecture, however, is a
unction of task demand. Prior studies showed that spontaneous ToM
nd effortful ToM recruit a common MTN but the latter elicits more re-
ional activity ( Ma et al., 2010 ). Here we observed a similar effect on
nter-regional connectivity––the greater degree of mentalizing a task re-
uires, the stronger synchronization unfolds among MTN areas. As all
etwork nodes were functionally defined by ToM task beforehand, this
rogressive effect on network-level coherence is most likely driven by
entalizing demand but less likely by other confounding factors such as

ask difficulty (i.e., cognitive resource should affect global synchroniza-
ion in dorsal attention network or frontoparietal control network, but
ot MTN). Indeed, additional analyses confirmed its specificity to men-
alizing because no similar progressive effect can be observed in other
rain networks such as the DMN (see Supplementary Fig 6; also see simi-
ar observations in ( Cole et al., 2014 )). In addition, we speculate that the
ierarchical organization of functional connectivity may reflect the in-
erent order of information integration in this network (Supplementary
ig 3B), with posterior MTN areas processing low-level transient goals
nd differing perspectives while anterior MTN areas infer the meaning of
ocial scenarios, and more temporally extended and contextually deep
raits and motivations. This serial-hierarchical information processing
ccords well with our current knowledge on the function of each MTN
rea ( Schurz et al., 2014 ) and converges with findings from recent MEG
tudies ( Pavlova et al., 2010 , Mossad et al., 2016 , Yuk et al., 2018 ). 

Our data allowed us to examine structure–function relationships
n the MTN. Previous studies demonstrate that structural connectivity
hapes spontaneous and evoked activity flow through brain networks,
esulting in similar time series correlations across rest and task states
 Cole et al., 2014 ). Our results support this claim (see Fig. 3 A and
 B). However, though structure leaves an indelible mark on function,
 growing literature suggests that the link between SC and FC is com-
lex, precluding a simple one-to-one mapping ( Suárez et al., 2020 ). In
ther words, structural and functional networks do not necessarily have
o be highly interdependent. Our results fully comply with this litera-
ure, showing that SC and FC were globally correlated across the entire
etwork; however, they exhibited different network organization and
ne-grained patterns. For example, some mentalizing areas ‘fired to-
ether’ but were not ‘wired together’ (e.g. TPJ-PreC and TPJ-DMPFC).
n addition, the structural architecture was characterized by two parallel
ubsystems whereas the functional architecture featured a single hier-
rchical structure (Supplementary Fig 3B). Notably our results showed
hat the TPJ is a functional connectivity hub coordinating information
ntegration within MTN, supporting a large body of prior research sug-
esting its pivotal role in ToM ( Saxe, 2010 ). However, our results also
ncovered an equally (or possible more) important role for the PreC.
his region was not only a functional hub, but also the solo structural
ub for the MTN. It is possible that the PreC plays a pivotal role in
elf-reflection/imagination/mental simulation processes that form the
edrock of high-level mentalizing ( Cavanna and Trimble, 2006 ). 

Structure-function discrepancies were also prominent in other con-
ectome features such as individual variance, spatial specificity, and
unctional specificity. We found that SC patterns were very similar
cross individuals, spatial extents, and DMN-vicinity networks, whereas
unctional connectivity and effective connectivity patterns were highly
eterogeneous across conditions. Thus, the white matter architecture
upporting mentalizing is consistent and stereotypical, indicating that
he results of our SC analysis should readily generalize to different
opulations. By contrast, the MTN encompasses multiple function-
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lly heterogeneous regions ( Mueller et al., 2013 ) and local voxels ex-
ibit distinct functional selectivity and connectivity profiles (i.e. PreC
 Bzdok et al., 2015 ), TPJ ( Mars et al., 2013 , Bzdok et al., 2013 ),
TL ( Olson et al., 2007 , Pascual et al., 2015 ), DMPFC ( Amodio and
rith, 2006 , Neubert et al., 2015 ), VMPFC ( Jackson et al., 2019 ,
elgado et al., 2016 )). We are not unique in reporting this; other in-
estigators have reported that FC is characterized by more variability
han SC at the entire connectome level ( Wang et al., 2020 , Chamberland
t al., 2017 , Zimmermann et al., 2019 ). 

These connectome characteristics may have important methodologi-
al implications. The field of network neuroscience often considers brain
etworks as fixed and static entities ( Salehi et al., 2020 ) and conven-
ionally defines network nodes by using atlas masks or meta-analytic
oordinates. Our results suggest that a liberal selection of ROI loca-
ions might be workable for investigating the structural connectome but
learly this is problematic when measuring the functional connectome.
sing group-level or Neurosynth coordinates to define MTN ROIs only
reserves coarse patterns of SC but loses fine-grained fingerprints of FC
nd EC which reflect important dynamic and idiosyncratic aspects of
he network ( Fig 4 ). We urge future researchers to employ functional
ocalizer and subject-specific ROIs when examining MTN connectivity,
ue to the disadvantages illuminated in this study of using liberal ROIs
o define specific functional networks. In the same vein, precisely identi-
ying individual-specific connectome would also be valuable for person-
lized psychiatry, for example when choosing brain stimulation sites to
oost MTN dynamics and improve ToM performance in disorders with
igh heterogeneity such as autism and schizophrenia ( Sylvester et al.,
020 ). 

The key contribution of our work is in unraveling the relationship be-
ween the MTN and the default mode network. Previous meta-analyses
nd reviews have emphasized the strong spatial overlaps between the
wo networks ( Buckner et al., 2008 , Spreng et al., 2009 , Mars et al.,
012 , Amft et al., 2015 , Spreng and Andrews-Hanna, 2015 , Andrews-
anna et al., 2014 , Hyatt et al., 2015 ). It has been proposed that ToM

s mediated by the DMN and thus the MTN is better characterized as a
unctional component of the DMN ( Schilbach et al., 2008 , Spreng and
ndrews-Hanna, 2015 ). Indeed, the idea of ‘social cognition as the de-

ault mode of cognition’ is increasingly popular ( Schilbach et al., 2008 ,
ieberman, 2014 , Meyer, 2019 ) and the DMN is believed to imple-
ent adaptive mentalizations that help individuals navigate their so-

ial environment by attributing mental states to others and sponta-
eously rehearsing social narratives to prepare for upcoming interac-
ions ( Buckner et al., 2008 , Schilbach et al., 2008 , Andrews-Hanna et al.,
010 ). To overcome the limitations of meta-analytic methods that rely
n group-level analysis, the present study scrutinized the MTN-DMN re-
ationship on a fine, single-subject scale (i.e. personalized MTN vs per-
onalized DMN) and interrogated connectivity similarity rather than ac-
ivation overlaps. We found that these networks are dissociable at mul-
iple levels. First, the MTN and DMN exhibited similar patterns of SC but
istinct patterns of FC and EC ( Fig 5 ). Second, they showed the opposite
etwork laterality. It is well known that regional activation in MTN is
ostly right-lateralized (e.g. TPJ and ATL) ( Saxe, 2010 , Van Overwalle

nd Baetens, 2009 , Saxe and Wexler, 2005 , Santiesteban et al., 2015 ,
arolis et al., 2019 ). Indeed, we found a right-hemisphere dominance
t all levels of the mentalizing connectome (see Supplementary Table
a). In contrast, our findings, as well as prior findings ( Saenger et al.,
012 , Wang et al., 2014 , Agcaoglu et al., 2015 ), found that the DMN
as found to somewhat left-lateralized (Supplementary Table 3b). Last,
e found brain connectivity patterns are relatively more homogeneous

n the DMN, suggesting that the two systems have different degrees of
nter-subject variation (Supplementary Table 6). Taken together, these
ndings dispute the prevalent assumption of identical network archi-
ecture between the MTN and DMN. They do share similar nodes and
 similar wiring system but differ substantially in functional dynamics,
aterality, and individual variability. Simply equating the two systems
r fully adopting one’s network properties to another is problematic.
9 
hile focusing on the commonality between the MTN and DMN has
roven insightful in our understanding of fundamental brain mecha-
isms (e.g. ‘social by default’) ( Schilbach et al., 2008 , Lieberman, 2014 ,
eyer, 2019 ), we contend that studying their differences is equally im-

ortant and deserves further attention. 
Our results shed light on the principles of DMN’s organization and

unction. The DMN has been proposed as a domain-general system
or internal mental simulation ( Spreng et al., 2009 , Buckner and Car-
oll, 2007 ). It is recruited whenever people conjure up experiences
utside of their local, immediate environment, such as thinking about
he future or the past, mentally constructing places and spaces, and
magining hypothetical events and thinking about another’s perspective
 Andrews-Hanna et al., 2010 ). Here we found all DMN-vicinity networks
ere supported by a common anatomical architecture connecting ma-

or multisensory/multimodal areas (i.e., TPJ, ATJ, prefrontal cortices).
his wiring configuration is essential for mental simulation because it
nables simulation units to access to sensory inputs, stored conceptual
nowledge, executive function resource, and evaluative processes. How-
ver, most DMN-vicinity networks exhibited distinct FC and EC pat-
erns, indicating their functional roles for different simulation process-
ng. These findings are compatible with the idea that the entirety of the
MN is responsible for mental simulation in general but different sub-
etworks are recruited for different forms and contents of simulation,
uch as constructing spatial and temporal models (episodic memory and
rospection), narrative models (semantic memory), and social models
elated to self (self-referential), events (moral judgment) and other’s
inds (ToM) ( Andrews-Hanna et al., 2014 , Buckner and Carroll, 2007 ,
amir et al., 2015 ). These subnetworks are juxtaposed closely but com-
unicate with different regions and networks outside the DMN for up-

tream and downstream processing of mental simulation ( Davey et al.,
016 ). Another possibility is that the DMN contributes to different types
f mental simulation by forming distinct modes of connectivity that
re distinguished by their location on the principle gradient of connec-
ivity ( Margulies et al., 2016 ). Future research should systematically
tudy the functional specialization of subregions, subnetworks, gradi-
nts within the DMN and clarify their relationships with each domain-
pecific process ( Spreng and Andrews-Hanna, 2015 , Hyatt et al., 2015 ,
ndrews-Hanna et al., 2010 , Laird et al., 2009 , Kernbach et al., 2018 ,
iNicola et al., 2019 ). 

Finally, the present work may prove useful for refining computa-
ional models of mentalizing. It is widely believed that ToM is a com-
lex construct supported by multiple separate processes or computations
 Schaafsma et al., 2015 ). Researchers have emphasized the role of dif-
erent MTN areas in representing different representational and compu-
ational variables ( Koster-hale and Saxe, 2013 , Koster-Hale et al., 2017 ,
liemann and Adolphs, 2018 , Hampton et al., 2008 , Suzuki and Do-
erty, 2020 ). Much less is known about the relationship between these
omputations and how representational information is synthesized and
ransmitted within MTN ( Suzuki and Doherty, 2020 ). Researchers could
se our connectome features as priors into modelling of mentalizing
perations, such as combining local representational information (i.e.
SA) with inter-regional connectivity properties (SC, FC, and EC), to
imulate network dynamics more precisely and yield better behavioral
redictions ( Anzellotti and Coutanche, 2018 ). In addition, we hope our
ork catalyzes autism researchers to explore whether alterations in fine-
rained connectivity explain deficits in mentalizing so prevalent in this
isorder. 

imitations 

This study has several limitations. First, although we adopted a stan-
ard analytic pipeline, functional connectivity is inherently prone to
onceptual and methodological problems ( Buckner et al., 2013 ) and is
ependent on a variety of factors (e.g. ROI selection methods, task dura-
ion, motor demand, and stimuli features), thus findings should be inter-
reted cautiously ( Warren et al., 2017 , Turchi et al., 2018 , Uddin et al.,
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008 ). Similarly, diffusion tractography has recently been criticized for
aving high false positives ( Maier-Hein et al., 2017 , Reveley et al., 2015 ,
homas et al., 2014 ). In addition, multimodal approaches could incur

nflated structure-function discrepancies (e.g. PPI analyses might be a
oisier or less reliable measure than the Pearson correlation and trac-
ographies; or diffusion data is usually less smoothed than the functional
ata) ( Eickhoff et al., 2018 ). Nevertheless, these tools provide consid-
rable insights into the anatomical and functional architecture of the
TN. As these techniques develop, we hope other researchers replicate

nd extend our findings. 
Second, our work rests on an assumption that there is a connectome

pecialized for mentalizing, which can be debated ( Alcalá-López et al.,
018 ). Also, since mentalizing is a broad concept, our conclusions were
nly based on the HCP ToM task, which might not be generalizable to
ther types of ToM tasks. We defined the spatial location of each MTN
ode by using peak activations in the social animation task and exam-
ned brain connectivity in the same task. Although activation and con-
ectivity were analytically orthogonal (i.e., we explicitly regressed out
ask activation when computing connectivity in the GLM to avoid cir-
ular analysis), it is still possible to incorporate biases in the results. In
ddition, there is massive heterogeneity in the tasks and neuroimaging
ethods used to investigate ToM ( Schaafsma et al., 2015 , Kliemann and
dolphs, 2018 ). The literature suggests that different ToM tasks (e.g. im-
licit or explicit) ( Van Overwalle and Vandekerckhove, 2013 , Frith and
rith, 2008 ) and stimuli (e.g. false-belief stories, mind-in-the-eyes pho-
os) might activate slightly different peak locations ( Van Overwalle and
andekerckhove, 2013 , Schurz et al., 2014 , Molenberghs et al., 2016 ),
hich might result in different connectivity profiles. Future research

hould compare our results with connectivity patterns derived from
ther ToM tasks and other ROI selection methods to examine the im-
act of task format on connectome characteristics. Furthermore, since
e were only interested in the core system of MTN (which also allows
s to directly compare the MTN and DMN), some ToM-related regions
e.g., amygdala, inferior frontal gyrus, fusiform gyrus, cerebellum) and
MN regions (e.g., hippocampus, lateral temporal cortex, retrosplenial
ortex) were not included in the present study. For simplicity, cross-
emispheric connections (e.g., between left and right TPJ) were not in-
luded in the current analysis. We also did not examine the sex differ-
nces in the mentalizing connectome ( Li et al., 2020 ). Future research
ould add more MTN-related nodes and interhemispheric connections in
he network analysis to further clarify the pathways and dynamics be-
ween core and extended MTN areas, across hemispheres, and between
ale and female brains. 

Third, our investigation of the neural dynamics in MTN (e.g., PPI)
s cursory and certain interpretations (e.g., hierarchical clustering re-
ults in Supplementary Fig 3B) are highly speculative. We used PPI be-
ause it is a simple static model of EC that provides some directional
nformation about neural interactions (e.g. Karl Friston defined it as
n explicit linear model of coupling from the seed to target region)
 Friston, 2011 , Smith et al., 2016 , Gerchen et al., 2014 , Stephan, 2004 ,
riston et al., 1997 ). However, we note that the post hoc interpretation
f PPI results can be ambiguous as a significant increase in coupling
rom one region to another region may be significant when testing for
 PPI in the opposite direction ( Smith et al., 2016 ). Dynamic causal
odelling (DCM) can overcome these limitations but might not be eas-

ly incorporated in the present study. DCM with large sample size and
odel space (5 areas for 100 possible models) requires expensive com-
utational resources ( Stephan et al., 2010 ) and the results (the optimal
odel) might not be generalizable to other ToM tasks (this is because
ifferent tasks have to set distinct sensory input areas (e.g. FFA for face-
ased ToM, VWFA for story-based ToM, and V5/MT for animation-based
oM ( Hillebrandt et al., 2015 )) and most of these input areas are be-
ond the core system of MTN). Future research should use more ad-
anced EC methods ( Friston, 2011 , Anzellotti et al., 2017 , Gates and
olenaar, 2012 , Smith et al., 2011 , Frässle et al., 2020 , Freitas et al.,
 p  

10 
020 ), probably testing on a smaller fMRI dataset, to validate and ex-
end our findings based on PPI. 

Lastly, like other large-scale publicly available datasets, the HCP has
nherent problems. In regards to this particular study, the social anima-
ion task was originally designed for children with autism ( Castelli et al.,
002 ) and is too easy for healthy adults, potentially result in ceiling ef-
ects for brain-behavior correlations (e.g. our connectome features can
nly explain less than 2% of variance). Also, the paradigm has limi-
ations to probe ToM and the task accuracy and reaction time may not
eflect individual’s mentalizing ability (e.g., confounded by general abil-
ties such as IQ and processing speed). Future research needs to develop
roper behavioral paradigms (e.g. using more ecologically valid social
asks) ( Schilbach et al., 2013 , Redcay and Schilbach, 2019 ) and use more
ultivariate approaches (e.g. CCA or PLS) to map individual ToM skills

o connectome features and also test their reproducibility across multi-
le datasets ( Marek et al., 2020 ). 

onclusions 

This multimodal neuroimaging study investigated the connectome
asis of mentalizing processing. We found the anatomical architecture of
he MTN is organized by two parallel subsystems (lateral vs medial) and
onstructed redundantly by local and long-range white matter fibers.
e delineated an intrinsic functional architecture that is synchronized

ccording to the degree of mentalizing and its hierarchy reflects the
nherent information integration order in MTN. We examined the cor-
espondence between the SC and FC and revealed their differences in
etwork topology, individual variance, spatial specificity and functional
pecificity. Finally, we elaborated on the relationship between MTN and
MN. The two networks share similar nodes and SC but exhibited dis-

inct FC patterns, the opposite laterality, and different homogeneity. In
um, we elucidated the structural and functional connectome supporting
entalizing processes and unraveled a complex relationship between

he MTN and DMN. These findings have important implications on our
nderstanding of how mentalizing is implemented in the brain and pro-
ide insights into the functions and organizations of the DMN. 

aterials and Methods 

articipants 

All data used in the present study came from the WU-Minn HCP Con-
ortium S900 Release. Subjects were included if they had completed all
rain scans (T1/T2, tfMRI, rsfMRI, and dMRI). To reduce variance in the
uman connectome, we restricted our population to right-handed sub-
ects, resulting in 680 healthy young adults in the final sample. It’s worth
entioning that only 672 out of 680 subjects were detected with enough

obust signals in all five bilateral mentalizing ROIs in the functional
oM localizer task (see Supplementary Table 1), thus all findings in the
resent study were based on 672 subjects (379 females, 22-36 years
ld). We also did a sanity check to remove HCP subjects with the same
amily ID (n = 48) and still got similar results. The study was reviewed
nd approved by Temple University’s Institutional Review Board. 

ata Acquisition, Preprocessing and Analysis 

Due to the complexity of the HCP data acquisition and preprocess-
ng pipeline, listing all scanning protocols and data analysis procedures
re beyond the scope of this paper; instead, they can be checked in
ull detail elsewhere ( Van Essen et al., 2013 , Van Essen et al., 2012 ,
mith et al., 2013 , Barch et al., 2013 , Glasser et al., 2013 ). Basically, we
dopted the ‘minimally pre-processed’ volumetric images of task fMRI
tfMRI), resting-state fMRI (rsfMRI) and diffusion MRI (dMRI) that were
rovided by the HCP S900 release. The dMRI data had gone through
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PI distortion, eddy current, and motion correction, gradient nonlin-
arity correction, and registration of the mean b0 volume to a native
1 volume. The fMRI data (rsfMRI and tfMRI) had undergone spatial
rtifact/distortion correction, cross-modal registration, and spatial nor-
alization to MNI space. rsfMRI was further denoised using ICA-FIX.

n addition to the HCP minimally pre-processed pipeline, we processed
he dMRI data with FSL’s BEDPOSTX ( Behrens et al., 2007 ) to model
hite matter fiber orientations and crossing fibers, and denoised the

fMRI data with ICA-AROMA ( Griffanti et al., 2014 ) to remove motion
rtifacts. All fMRI data were spatially smoothed at 4mm. 

To ensure sensitivity to the connectome within each subject, we not
nly defined subject-specific ROIs based on the ToM localizer, but also
erformed all analyses firstly at the single subject level and then com-
ined them into an aggregate statistic for group-level inference and sig-
ificance tests. Unless otherwise stated, all significant results reported in
his study were corrected for multiple comparisons using false discovery
ate (FDR). 

unctional ToM Localizer and Selection of Mentalizing ROIs 

The HCP social tfMRI data can be effectively used as a functional
oM localizer ( Barch et al., 2013 ). Participants were presented with
hort videos clips of geometric shapes either interacting in a socially
eaningful way (e.g. dancing, coaxing, mocking, and seducing), or mov-

ng randomly. After watching each video, participants were required to
hoose between three possibilities: whether the moving shapes had a
Social interaction’, ‘No interaction’, or ‘Not sure’. Since the HCP S900
elease had already provided the individual-level (within-subject) tfMRI
nalysis data (4mm smoothed MSM-All), we used the connectome work-
ench software to extract the MNI coordinates of the peak activation of
ve bilateral predefined MTN ROIs (as well as its magnitude). Specif-

cally, we created a MTN mask beforehand based on a previous meta-
nalysis ( Schurz et al., 2014 ) and extracted MNI coordinates of the peak
ctivation for each MTN area within that mask. If no activation or weak
ctivation were detected for certain areas (see Supplementary Table 1),
hat subject would be excluded for subsequent analyses (i.e., 672 out
f 680 subjects had all ten mentalizing ROIs). We used the contrast

ToM > Random’ for each subject at the individual level (see Supplemen-
ary Table 1). This contrast has been widely used to define mentalizing
rain regions ( Schaafsma et al., 2015 , Schurz et al., 2014 , Barch et al.,
013 , Castelli et al., 2000 ). These subject-specific peak coordinates were
sed as input (6mm-radius spheres) in subsequent seed-based brain con-
ectivity analyses at the individual level (probabilistic tractography,
esting-state analysis, psychophysiological interaction), and the cluster
eak magnitudes were adopted as the index of neural activity for men-
alizing ROIs in brain-behavior association and hemispheric asymmetry
nalysis. 

There are many ways to define the MTN. Different ToM tasks and
aradigms activate slightly different sets of brain areas ( Schurz and
erner, 2015 , Schurz et al., 2014 , Molenberghs et al., 2016 , Mar, 2011 )
ut the core system (i.e. TPJ, PreC, ATL, DMPFC, VMPFC) is reliably and
onsistently implicated across tasks ( Schurz et al., 2014 ). Since we were
nly interested in this core system, we did not include those extended
egions that are only activated by certain task types, such as amygdala
i.e. affective processing), fusiform gyrus (i.e. agency/animacy detec-
ion) ( Schultz et al., 2003 ), inferior frontal gyrus (i.e. managing conflict
etween perspectives) ( Schurz et al., 2015 ). In addition, several mental-
zing ROIs (e.g., TPJ, PreC, VMPFC) encompass large cortical areas with
ultiple functional subregions. Here we adopted a simple procedure to

hoose the strongest peak activation within the entire regional mask
 Wang et al., 2020 ). This may bring some inter-subject inconsistency
e.g., some subjects had dorsal part of the precuneus whereas others
ad ventral part) but were more operable for large-scale neuroimaging
ataset like HCP. For more detailed information about the mean and
ange of each ROI’s coordinates, please check Supplementary Table 1. 
11 
OI Definitions for DMN and Other Functional Networks 

To define the nodes of multiple DMN-vicinity functional networks,
e employed Neurosynth database to perform six automated term-based
eta-analyses of the functional neuroimaging literature on ‘mentaliz-

ng’, DMN, ‘autobiographical memory’, ‘self-referential’, ‘moral reason-
ng’ and ‘semantic memory’. For specific search terms queried in Neu-
osynth, please check Supplementary Table 4. For each network, we
sed Neurosynth API to get unthresholded maps and extracted the clus-
er peak coordinates in the vicinity of TPJ, PreC, ATL, VMPFC, and
MPFC, and used them as input (6mm-radius spheres) for subsequent

eed-based brain connectivity analyses. For mental time travel, as there
ere no searchable terms in Neurosynth, we consulted the network
ode coordinates from a dedicated researcher-curated meta-analysis
 Fornara et al., 2017 ). 

We also used a data-driven approach to define subject-specific DMN
odes. Spatial ICA was performed using the Group ICA of fMRI Tool-
ox (GIFT) ( Calhoun et al., 2001 ) on HCP rsfMRI. A high model space
number of components = 100) was estimated at the group level and we
dentified the ‘DMN-component’ (i.e. component 11, see Supplementary
ig 5) by visual inspection and spatial overlay with an independent DMN
emplate (provided in GIFT) ( Franco et al., 2009 ). We decomposed the
MN template into ten binary masks (one for each DMN subregion) and
sed them separately to extract peak coordinates of the DMN-component
t the single-subject level using subject-specific spatial ICA maps. 

robabilistic Tractography 

We used probabilistic tractography to reconstruct the entire MTN
tructural connectome. Tractography analyses were performed in na-
ive space and all results were transformed to Montreal Neurological
nstitute (MNI) standard space. We used an ROI-to-ROI approach where
ractography was implemented between each pair of ROIs within the
ame hemisphere. Fiber tracking was initiated in both directions (from
eed to target and vice versa) and 25000 streamlines were drawn from
ach voxel in the ROI. A binarized cerebellum mask was set as an exclu-
ion mask for all analyses. The resulting 3D image files containing the
utput connectivity distribution were standardized using the maximum
oxel intensity of each image resulting to a standardized 3D image with
oxel values spanning from 0 to 1. These standardized path images were
hen thresholded at the 0.1 level to reduce false-positive fiber tracks.
inary connectivity maps were further generated for each subject and
dded across subjects. 

FSL’s dtifit was used to fit a diffusion tensor model at each voxel.
or each subject, the fractional anisotropy (FA), mean diffusivity (MD),
adial diffusivity (AD), and axial diffusivity (RD) maps were created
nd their mean values for each ROI-ROI connection were extracted. The
umber of streamlines for each path was calculated by averaging two
aytotal numbers produced by tractography. The connectivity proba-
ility for an ROI-ROI connection (e.g. TPJ-DMPFC) was defined as the
treamline count of that connection divided by the sum of streamline
ounts of all connections passing either ROIs (e.g. there were 7 paths in
otal connecting either TPJ or DMPFC) ( Wang et al., 2020 ). 

ommunity Detection, Hierarchical Clustering, and Graph Theoretical 

nalysis 

To reveal the network organization of MTN, we performed three
omplementary analyses. We first prepared group-averaged connectiv-
ty maps for each hemisphere (i.e., using structural connectivity prob-
bility map or FC maps) and implemented graph theoretical analysis
o reveal the hubness of the SC and FC using node centrality measures
see Supplementary Fig 3B for hubs of MTN, and Supplementary Ta-
le 5 for hubs of other DMN-vicinity networks). Next, we conducted
ommunity detection analysis on the same group-averaged connectiv-
ty maps to reveal the network modularity. Finally, we implemented
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gglomerative hierarchical clustering analysis to reveal the hierarchy
f structural and functional connectome (Supplementary Fig 3B). For
ommunity detection analysis, modular partitions were obtained us-
ng Louvain community detection method in the NetworkX toolbox
https://networkx.github.io/). Graph theoretical analyses (node central-
ty) and agglomerative hierarchical clustering analyses were performed
n MATLAB R2019b using function ‘centrality’ and ‘linkage’. 

nalyses of Major White Matter Bundles and Superficial White Matter 

ystem 

For each hemisphere, ten major white matter bundles were identi-
ed for each subject using the Automated Fiber Quantification (AFQ)
oftware package (https://github.com/jyeatman/AFQ) ( Yeatman et al.,
012 ). We focused our analysis on six major fiber tracts that were
ound to be critical for mentalizing processing in a recent meta-analysis
 Wang et al., 2018 ): the inferior longitudinal fasciculus (ILF), inferior
ronto-occipital fasciculus (IFOF), cingulum (CING), uncinate fasciculus
UF), superior longitudinal fasciculus (SLF) and arcuate fasciculus (AF).
e combined the results of SLF and AF because the AF is part of the

LF and their voxels overlap substantially in the AFQ ( Kamali et al.,
014 ). We also analyzed four additional fasciculi provided by the AFQ
thalamic radiations, corticospinal tracts, anterior and posterior corpus
allosum) and found little overlap ( < 1%) with all ROI-ROI connections,
ence we did not include these tracts in the paper. 

We used FSL’s atlasquery tool to evaluate the relative contribution of
ong-range and superficial white matter to the MTN ( Wang et al., 2018 ,

ang et al., 2020 ). After running probabilistic tractography, a binarized
mage for each ROI-ROI connection (standardized and thresholded at
.1) was created for each subject and then added together across all
ubjects. We also combined all 20 bilateral connections together into
ne binarized image for each subject and added together across sub-
ects to obtain the entire connectome image. Only voxels that existed
n more than 50% of the subjects were retained (i.e. the skeleton im-
ge) and projected on two white matter atlases: the JHU white-matter
ractography atlas with 48 long-range tract labels ( Mori et al., 2008 )
nd the LNAO superficial white matter atlas with 79 U-shaped bundles
 Guevara et al., 2017 ). Voxelwise analyses were then implemented to
alculate the probability of the skeleton image being a member of any
abelled tracts within each atlas. 

unctional Connectivity and Effective Connectivity Analysis 

To examine the coactivations and dynamics among MTN ROIs, we
mployed simple general linear regression model (GLM) to estimate the
C and EC during the ToM localizer task. For each MTN ROI as a seed
egion, we built a ‘generalized PPI’ model on HCP social tfMRI data
ith non-deconvolution method ( McLaren et al., 2012 ). The model had
 separate regressors: 2 psychological regressors of task events (ToM
s Random videos), 1 physiological regressor of the seed ROI’s time-
eries, and 2 corresponding interaction regressors (task events x seed
OI’s timeseries). ToM-state FC between the seed ROI and other ROIs
an be derived from the beta-weight of the physiological regressor (this
as equivalent to the Pearson correlation between two ROIs’ timeseries
fter regressing out the task conditions and PPI regressors). The EC was
stimated from the contrast between two interaction regressors (ToM
PI > Random PPI). Z-scored beta-weights were extracted for each pair
f ROIs, which resulted in one 5 × 5 matrix for each connectivity type
ToM-state FC or EC), each hemisphere, and each subject. While the
oM-state FC matrices were further symmetrized, no symmetrization
as applied to EC matrices due to its directional character. At the group

evel of the EC, one sample t-test across subjects was performed at
ach pair of ROIs to detect any significant effectivity connectivity. Non-
arametric permutation tests (10,000 times) were also implemented to
e-validate all significant results. 
12 
Coactivations among MTN ROIs were also examined in two other
CP tasks. The HCP motor task was originally designed to map motor-

elated areas. Participants had to follow visual cues to tap their left/right
gures, squeeze left/right toes, or move their tongue ( Buckner et al.,
011 ). Since it was inherently a non-social task, we used the motor task
s a baseline check. The HCP emotion task was originally designed to
licit brain states for negative affect recognition and empathy, which
re conceptually related to implicit mentalizing. Participants had to do
 perceptual matching task either on emotional faces (fearful/angry) or
eutral shapes ( Hariri et al., 2002 ). Similar GLM models were employed
o these two HCP tasks to derive task-state FCs among MTN ROIs. The
odel for motor task had 11 separate regressors: 5 psychological re-

ressors of task events (left finger, right finger, left toe, right toe and
ongue movement), 1 physiological regressor of the seed ROI’s time-
eries, and 5 corresponding interaction regressors (task events x seed
OI’s timeseries). The model for HCP emotion task had 5 separate re-
ressors: 2 psychological regressors of task events (emotional faces and
eutral shapes), 1 physiological regressor of the seed ROI’s timeseries,
nd 2 corresponding interaction regressors (task events x seed ROI’s
imeseries). Emotion-state FC between the seed ROI and other ROIs can
e derived from the beta-weights of the physiological regressor. 

Finally, we examined the coactivation patterns during resting state
hen mentalizing is assumed to be minimal. rsFC between five MTN
OIs was estimated by building five GLM models on HCP resting-state
ata. Each model defined one ROI’s time series as the dependent variable
nd the rest four MTN ROIs’ time series as independent variables. For
ach hemisphere, Fisher-transformed correlation coefficients (z-scored
eta-weights) were extracted for each pair of 5 × 5 ROIs, symmetrized,
nd then averaged across two separate resting-state scans. 

ultilevel Modelling Analysis 

Multilevel model analysis (MLM, also referred to as mixed effects
egression models) was used to examine whether FC among MTN ROIs
ncreased as the task category required more ToM processing. Task cat-
gory was coded as 1, 2, 3 for HCP motor, emotion, ToM task, and was
ested in MLM in SPSS 25.0 with random intercept to examine whether
he degree of mentalizing required by a task category can predict the
trength of FC for all ten pairwise connections. 

tructure-Function Relations 

At the individual subject level, we prepared one connectivity ma-
rix for SC, rsFC, ToM-state FC and EC, separately for each hemisphere.

e did pairwise correlations among these brain connectivity matrices
y taking all elements of each matrix except the diagonal ones (self-
onnections), applying a Fisher’s Z-transform, and then computing a
earson correlation. Conventional one sample t-tests (against 0) were
sed at the group level to determine the statistical significance after
ontrolling for multiple comparisons. Non-parametric permutation tests
10,000 times) were also implemented to re-validate all results. 

rain-Behavior Associations 

Pearson correlation was used to examine the brain-behavior asso-
iation in SPSS 25.0. On the brain side, there were five types of fea-
ures: (1) neural responses during mentalizing from 10 bilateral ROIs
the magnitude of BOLD signals in the contrast of ‘ToM > Random’);
2) white matter characteristics (i.e. connectivity probability, FD, MD,
D, RD, streamline counts) from 20 bilateral ROI-ROI connections and
0 major fasciculi; (3) 20 bilateral FC for resting state; (4) 20 bilat-
ral FC for ToM-state; and (5) 40 bilateral EC for ToM-state. On the
ehavior side, we had two metrics from the HCP ToM task: task ac-
uracy (Social_Task_TOM_Perc_TOM) and median reaction time (So-
ial_Task_Median_RT_TOM). All significant results were corrected for
ultiple comparisons using false discovery rate (FDR). 
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emisphere Lateralization 

We used a 2-way repeated-measure ANOVA in SPSS 25.0 to examine
TN’s hemisphere lateralization at each level of measurements. At the

eural activation level, we set the ANOVA with factors of ‘hemisphere’
nd ‘5 MTN ROIs’. At the SC and rsFC level, we set the ANOVA with fac-
ors of ‘hemisphere’ and ‘10 ROI-ROI connections’. At the effective con-
ectivity level, we set the ANOVA with factors of ‘hemisphere’ and ‘20
irectional ROI-ROI connections’. If a main effect of hemisphere or an in-
eraction effect was found in the ANOVA analysis, pairwise t-tests were
urther implemented to determine which hemisphere was dominant for
hich connections. Similar ANOVA was applied to DMN’s SC and rsFC

o examine its hemispheric preference. All significant results were cor-
ected for multiple comparisons using false discovery rate (FDR). 
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