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Abstract

Detection of the relevant brain regions for characterizing the distinction between

cognitive conditions is one of the most sought after objectives in neuroimaging

research. A popular approach for achieving this goal is the multivariate pattern analy-

sis which is currently conducted through a number of approaches such as the popular

searchlight procedure. This is due to several advantages such as being automatic and

flexible with regards to size of the search region. However, these approaches suffer

from a number of limitations which can lead to misidentification of truly informative

regions which in turn results in imprecise information maps. These limitations mainly

stem from several factors such as the fact that the information value of the search

spheres are assigned to the voxel at the center of them (in case of searchlight), the

requirement for manual tuning of parameters such as searchlight radius and shape,

and high complexity and low interpretability in commonly used machine learning-

based approaches. Other drawbacks include overlooking the structure and interac-

tions within the regions, and the disadvantages of using certain regularization tech-

niques in analysis of datasets with characteristics of common functional magnetic

resonance imaging data. In this article, we propose a fully data-driven maximum rele-

vance minimum redundancy search algorithm for detecting precise information value

of the clusters within brain regions while alleviating the above-mentioned limitations.

Moreover, in order to make the proposed method faster, we propose an efficient

algorithmic implementation. We evaluate and compare the proposed algorithm with

the searchlight procedure as well as least absolute shrinkage and selection operator

regularization-based mapping approach using both real and synthetic datasets. The

analysis results of the proposed approach demonstrate higher information detection

precision and map specificity compared to the benchmark approaches.
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1 | INTRODUCTION

In the common form of functional magnetic resonance imaging

(fMRI), the blood-oxygen level dependent (BOLD) contrast is

extracted as the response signal in order to measure neural activity

in the brain (Huettel, Song, McCarthy, et al., 2004). Measurement of

this response signal over time forms a time course corresponding to

each voxel whose dimensions depend on the spatial resolution of

the imaging device. Analysis and comparison of these time courses

can reveal valuable knowledge regarding different neurological con-

ditions among populations. Popular approaches for analyzing fMRI

data can be broken down into two main categories: voxel-wise uni-

variate analysis, and multivoxel pattern analysis, also known as mul-

tivariate pattern analysis (MVPA; Wong, Palmeri, Rogers, Gore, &

Gauthier, 2009; Norman, Polyn, Detre, & Haxby, 2006). The univari-

ate analysis searches for correlations between psychological or

physical status and the activation of single voxels while MVPA aims

to detect patterns among conditions observed among combinations

of multiple voxels (Davis et al., 2014). Unlike univariate analyses,

MVPA approaches are designed to allow researchers to test how

dispersed patterns of BOLD activation across multiple voxels relate

to experimental conditions (Davis et al., 2014; Swearingen, 2015).

One approach in multivoxel scheme is to compare and analyze spa-

tially averaged (smoothed) BOLD activation across the entire

regions of interest. Advantages of this approach include an increase

in the signal to noise ratio as well as the consistency of the analysis

among subjects can be noted (Jimura & Poldrack, 2012). However,

spatial smoothing leads to significant loss of information about the

patterns of activation within the regions of interest. This information

includes the activities and dynamics within subregions which can

provide valuable insight into their relation with different mental

states (Gardumi et al., 2016; Stelzer, Chen, & Turner, 2013). This

issue becomes more complex when dealing with larger regions of

interest. Therefore, in order to capture such information, it is neces-

sary to consider the BOLD activity in smaller spherical subsets

(Etzel, Zacks, & Braver, 2013).

The question of identifying relevant regions with regards to spe-

cific conditions has prompted numerous studies during the recent

decades. One of the most commonly employed approaches for this

application is the searchlight method proposed by Kriegeskorte et al.,

which given the dimensions of a sphere window, performs a search

across a brain region to detect the information of sets of neighboring

voxels (Kriegeskorte & Bandettini, 2007; Kriegeskorte, Goebel, &

Bandettini, 2006). In this multivariate approach, spatial patterns of

activity within the search window are compared between two groups

using statistical discriminant analysis or supervised machine learning

approaches (Chen et al., 2011; Uddin et al., 2011). The search sphere

(searchlight) is centered on every voxel, that is, the derived separabil-

ity value for each voxel is derived from the discrimination score of its

surrounding searchlight, not the voxel individually. Advantages of

searchlight analysis include its automatic procedure, its ability in per-

forming whole-brain search without the need to specify brain regions,

and its high interpretability and intuition.

However, the searchlight procedure suffers from multiple draw-

backs which can lead to erroneous detection of informative voxels/

regions. Etzel et al. discussed several issues with the searchlight

method in detail which we briefly point out here (Etzel et al., 2013).

One limitation of the searchlight procedure is that it can declare a

subregion with a few highly informative voxels as informative, making

detection of informative voxel clusters ambiguous. This issue becomes

more prevalent with selection of larger search radii (Etzel et al., 2013).

Moreover, choosing an appropriate search radius is essential, which

depends on the shape and size of the region being searched. How-

ever, finding the discriminative subregion by a search over several

possible search radius values is difficult especially when being applied

to whole-brain analysis. Aside from this issue, the shape of the search-

light can limit the detection of the subregions with the highest dis-

crimination power. This is due to the fact that the searchlight is

commonly in the shape of a sphere or a cube, which forces subregions

with irregular shapes to fall between multiple searchlight positions.

This issue can partially be relieved through assigning the searchlight

sphere as small as possible at the expense of overfitting (Etzel et al.,

2013). Another shortcoming with this method is the fact that assign-

ment of a single searchlight radius might provide optimal results for

one subregion, but does not guarantee similar results for many other

regions. Consequently, finding the optimal searchlight radius for a

large search space comprised of subspaces with varying anatomical

characteristics is a challenging task. Tackling some of the mentioned

issues requires further analysis while some issues are inherently irre-

solvable through the scope of the searchlight procedure.

Several other approaches have been proposed based on machine

learning techniques to create models for automated decoding of cog-

nitive states during recent years. A number of these techniques pro-

posed using different variations of the least absolute shrinkage and

selection operator (LASSO) family to develop a continuous feature

evaluation process (Gramfort, Thirion, & Varoquaux, 2013; Ng &

Abugharbieh, 2011; Shimizu et al., 2015; Toiviainen, Alluri, Brattico,

Wallentin, & Vuust, 2014). However, the use of LASSO regularization

in fMRI studies introduces several limitations. One of such constraints

is the fact that in case of number of features p being larger than the

number of examples m, LASSO selects m features at maximum

(Tibshirani & Saunders, 2005). This is a critical drawback due to the

fact that in fMRI studies, especially on voxel-level analysis, it is very

common that the number of subjects is far smaller than the number of

features (voxels, or even regions of interest). Another drawback of

LASSO is the fact that since it forces less important coefficients to be

zero, it does not provide the information value of the features that

have not been selected. Consequently, instead of creating an informa-

tion spectrum, it points to a small subset of features that it finds to be

more informative, which makes it less useful for researchers in fMRI

studies due to loss of knowledge regarding majority of the brain areas.

Moreover, using a more recent variation of LASSO which considers

group structure named group LASSO requires disjoint subsets of the

voxels to be predetermined. This limitation creates an issue similar to

the searchlight analysis radius selection since the choice of size and

structure of the groups of voxels changes the results of the feature
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space shrinkage. Also, the interpretability of performing a

regularization-based approach on the entire feature space is low.

Another method for detecting biomarkers is the manifold learning

suggested by Wolz, Aljabar, Hajnal, and Rueckert (2010). Despite its

power in nonlinear classification of MR images and the consideration

of spectral theory in dimensionality reduction, several parameters

need to be fine-tuned for it to achieve preferable results. These

parameters include the optimal neighborhood size, the number of

dimensions learned by the manifold, and the heat kernel parameter

which the Laplacian eigenmap feature selection is sensitive to. Also,

time complexity of the spectral embedding phase of manifold learning

grows substantially with the size of neighborhood, making it less effi-

cient for full-brain analysis (Belkin & Niyogi, 2003). In another recent

work, Varol et al. suggested a linear multivariate discriminative statis-

tical mapping using least squares support vector machine (LS-SVM) to

achieve higher sensitivity and specificity in detecting group differ-

ences while preserving computational efficiency of the analysis (Varol,

Sotiras, & Davatzikos, 2018). This approach can be used for both clas-

sification and regression problems and can employ various local

learners based on the scale of the regions to be mapped. However,

this method also requires the radius of the neighborhood as well as

the LS-SVM parameters (including the SVM slack variable C and any

other possible kernel variables) to be tuned to ensure the best

performance.

Another category of approaches in decoding the cognitive state

of the brain is based on the principles of deep neural networks.

Although family of techniques have been mostly used in lesion seg-

mentation and functional connectivity analysis, a number of studies

have also employed them to create a mapping or visualization of the

spatial information of the regions. In this approach, the task of classi-

fying the neurological conditions is treated similar to image classifica-

tion where a model such as a convolutional neural network (CNN) is

trained based on high resolution activation patterns in the brain. Deep

learning-based approaches require a large number (usually to the

order of hundreds of thousands) of examples for effective training

and parameter tuning. In order to transfer a pretrained CNN on fMRI

data, a three-dimensional CNN is required to be trained on a large set

of imaging data to extract the necessary features for fMRI analysis

(Hossain, Umar, Alsulaiman, & Muhammad, 2019; Jang, Plis, Cal-

houn, & Lee, 2017; Kamnitsas et al., 2017; Liu et al., 2018; Pinaya

et al., 2016; Sarraf & Tofighi, 2016; Wang et al., 2019). However,

using deep CNNs requires a certain level of expertise to interpret the

high level features and to fine-tune the network for the specific task

of fMRI classification, and often comes with significant computational

complexity (Heinsfeld, Franco, Craddock, Buchweitz, & Meneguzzi,

2018; Liu et al., 2018). Furthermore, Bjornsdotter et al. proposed an

MVPA approach based on Monte-Carlo sampling where information

is combined across overlapping neighborhoods (Bjo¨rnsdotter,

Rylander, & Wessberg, 2011). Despite its advantage in increasing the

stability, this approach does not precisely provide the significance of

each voxel in characterizing a certain condition.

In conclusion, development of new analytical models which

tackles the above-mentioned issues while retaining the beneficial

aspects of those approaches is essential for the critical task of auto-

matically discovering the information of different regions regarding

certain neurological conditions. In this study, we propose a new

approach for extracting features with voxel-level precision. The aim of

this approach is to provide an interpretable mapping of information

clusters where the spatial proximity and the interactions between the

voxel-level regions are taken into account without the requirement of

parameter tuning. Through a completely data-driven search, the pro-

posed approach achieves this goal while increasing the classification

accuracy at the same time. Through empirical results on a real fMRI

dataset as well as synthetic data, we compare the performance of the

proposed algorithm with the searchlight methods. We explain the

experimental results as well as the suggested methodology in more

detail in the next sections.

2 | METHODOLOGY

The objective of the proposed methodology is to create the informa-

tion map of the brain (or regions of interest) with regards to a certain

neurological status, for example, a cognitive disorder, age, activation

pattern differences during different tasks, and so forth. In other

words, given two (or more) populations, the goal is to discover the

level at which the information based on BOLD activation of brain

regions differ between groups, which in this study we define as the

discriminant score of the region (note that we use the terms discrimi-

nant score and information interchangeably in order to preserve con-

sistency with the related literature). We also define a cluster as a

group of neighboring voxels whose size can span from one voxel to

the entire area to be searched, and a search space as the region of

brain that we intend to explore (search) and investigate in order to

detect “informative” subregions. Furthermore, since each voxels activ-

ity level is treated as a feature, the terms “voxel” and “feature” in this

article, bear the same meaning. Generally, the input to the proposed

approach is a data matrix where each row corresponds to one subject,

and each column corresponds to a voxel in the search space. There-

fore, each element in the data matrix contains the activation or BOLD

value of a voxel in the search space averaged over time. The output of

the proposed algorithm is a set of information clusters where each

cluster is assigned an information score. To simplify reference to the

proposed algorithm, we refer to it as ICS, which is the acronym for

information cluster search.

2.1 | The proposed algorithm

To extract the informative clusters within a region of interest we pro-

pose an algorithm which traverses the search space based on an

information-based heuristic, and outputs the discovered information

clusters and their measured discriminant scores after termination. This

process resembles greedy search algorithms which pick the “best”

neighbor according to a heuristic, which in this case is the discriminant

score of the cluster of voxels (Dechter & Pearl, 1985; DeVore &
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Temlyakov, 1996). However, unlike common greedy algorithm proce-

dures, the proposed approach reviews the searched clusters and

prunes the redundant voxels after each expansion step to increase its

precision and reduce the risk of falling in local optima.

In general, ICS includes two steps, expansion step, and pruning

step, which are periodically performed for each information cluster.

During the expansion step, ICS performs a search starting from a

voxel V to detect its immediate neighbors whose pairing with

V (adding it as a feature to the feature set that includes V) enhance

its power in distinguishing between the classes of data. This process

is the maximum relevance approach in feature selection. Then, the

pruning step starts in which a redundancy detection is performed on

the newly created cluster to remove the redundant voxels and fur-

ther optimize the selected cluster. This analysis is performed due to

the fact that addition of new features to a feature group can intro-

duce new redundancies, that is, the Markov blanket (MB) of the tar-

get variable defined as the optimal set of attributes to predict it can

change due to the influence of the newly added feature (Aliferis,

Statnikov, Tsamardinos, Mani, & Koutsoukos, 2010; Koller & Sahami,

1996). After the redundancy procedure, similar expansion process is

performed on the pruned cluster, meaning that the neighboring

voxels of the entire remaining cluster after redundancy analysis are

examined to find the useful voxels to add to the cluster. The expan-

sion and pruning process are repeated until there are no neighboring

voxels left whose addition to the detected cluster is helpful. Note

that ICS avoids removing newly added voxels or admitting voxels

that have been found redundant in the last step in order to avoid

falling in an infinite loop. The detailed pseudocode of the algorithm

is provided in the Supplementary Information. Searching the neigh-

borhood of the entire cluster alleviates the issue of falling in local

optima in greedy algorithms (Preparata & Shamos, 2012; Tan, He, &

Aaron, 2006). On the other hand, the proposed procedure relaxes

the requirement of performing a search through all possible combi-

nations while increasing the spatial precision of search by investigat-

ing voxel-level resolutions. In general, the steps of the proposed

algorithm go as followed (details are provided in the Supplementary

Information):

Step 1: Start from voxel vs and measure the relevance score of its

conjugation with each of its immediate neighbors vn ∈ Vneighbors one

by one. Select the subset of neighbors Vpos � Vneighbor whose addition

to vs provides larger information value than the individual information

quality of vs (Equation (1)). Then, combine vs and Vpos to create the

information cluster IC = vs [ Vpos.

Step 2: Search each voxel adjacent to IC, and admit the neighbor-

ing voxels whose addition to IC enhances its relevance score, (similar

to step one, but for the entire IC).

Step 3: Perform the feature redundancy analysis on IC and

remove its redundant voxels (except the newly added voxels).

Step 4: Repeat Steps 2 (except the newly removed voxels) and

3 to expand and prune the cluster until there is no new neighbor

whose addition to IC increases its score. Save IC and its information in

the output variable.

Step 5: Start from the voxel next to vs and follow Steps 1–4.

Step 6: When Steps 1–4 are performed for every voxel as the

starting voxel in the search space, terminate the algorithm and output

the set of discovered information clusters and their information value.

As can be seen in the described steps, the cluster originating from

vs is expanded until no neighbors are found whose addition to the

cluster enhances its discriminant score. In that case, the algorithm

saves the detected cluster as well is its calculated score (information)

as part of the output, and starts the same process starting from the

voxel next to vs. The algorithm terminates when a cluster is detected

starting from every voxel in the search space. A schematic plot of the

steps of this procedure is illustrated in Figure 1 where the steps pro-

ceed from top to bottom (Steps 1–4) starting from every voxel. Note

that the size of information clusters can span from one voxel (meaning

that none of its immediate neighbors increase its information) to the

entire search space (meaning that the entire search space as one clus-

ter contains relevant information). However, both of these extreme

cases were rare according to our experiments. Also, note that during

Step 2, rather than selecting only one neighbor, which is the process

in common greedy search methods, a group of candidate voxels of

each neighborhood layer of cluster IC is admitted.

2.2 | Information cluster versus activation cluster

Several statistic and algorithmic variable search methods have been

suggested for areas such as gene expression (G'Sell, Wager,

Chouldechova, & Tibshirani, 2016). However, these datasets do not

consider the spatial characteristics of the data. Moreover, Lu, Jiang,

and Zang (2003) suggested a region growing approach where clusters

are located based on a homogeneity criterion and a predefined maxi-

mum cluster size determines the expansion stopping process. Also,

Heller, Stanley, Yekutieli, Rubin, and Benjamini (2006) and Rosenblatt,

Finos, Weeda, Solari, and Goeman (2018) propose a cluster detection

method where neighboring voxels form a cluster based on the correla-

tion of their corresponding time series. The difference between these

studies and ICS is that they detect the activation clusters, that is, they

aim to locate groups of contiguous voxels that are activated together

and the information of the clusters do not play a role in the search

process. While the contiguity of the voxels is taken into consideration

in the proposed approach in this article, the voxels within the clusters

might not show similar levels of activation, and instead their combina-

tion of activation levels forms the information cluster that is detected

by the cluster search process. In other words, in information clusters,

the activation of a cluster of voxels is not necessarily correlated. In

fact, contrary to a necessarily correlating feature set, we define the

conjunction of a feature set (voxel-level activation) constitutes an

information cluster, which is a principal concept in rule-based pattern

discovery.

While the proposed algorithm provides a general data-driven

framework for information detection, the proper choice of heuristic

function for analysis of relevance and redundancy needs important

considerations: first, it is important to take into account the interac-

tion and structure within groups of voxels rather than considering
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them as merely a number of voxels placed as a group. Second, feasibil-

ity of the analysis should be considered as the number of voxels in the

search space can be too large for many feature selection methods due

to their time complexity. For the first point, we propose an online fea-

ture selection criterion which takes the interaction between features

in to account. For the second issue, we propose an algorithmic tech-

nique for implementation of the proposed method which makes the

analysis time-efficient for experimentation on bigger search spaces

such as whole brain analysis. In the next section, we describe these

methodological techniques.

2.3 | Online feature selection as heuristic function

A basic approach for evaluating the discriminant power of a group of

features is the supervised feature subset selection by simply using the

test accuracy of a trained machine learning algorithm. The major

shortcomings of this approach include the requirement of retraining

the model each time new voxels information is being evaluated as well

as being model-specific. Several other approaches have been pro-

posed for feature set evaluation including statistical methods, linear

discriminant analysis (Balakrishnama & Ganapathiraju, 1998; Welling,

2005) and spectral cluster analysis (Rousseeuw, 1987; Wilks, 2011;

Zhao & Liu, 2007). The purpose of all of these approaches is to pro-

vide a measure of how separable groups of data are based on a fea-

ture set. These approaches are designed for offline feature selection

where the entire feature group is known a priori. As explained previ-

ously, in the proposed ICS approach, while the samples (subjects) are

constant, the features flow into the model one at a time dynamically,

and are admitted to the set if they are found to be beneficial to the

information of the cluster, otherwise they are rejected. As a result, we

can exploit this characteristic to formulate our search procedure as a

criterion known as online (or streaming) feature selection, where eval-

uation of the features is performed by their arrival. This formulation

makes it suitable to perform dynamic feature group evaluation during

the spatial search. Online feature selection is a relatively new topic for

which a number of approaches have been proposed during the recent

years including the gradient descent based model named Grafting

(Perkins & Theiler, 2003), the likelihood ratio-based method named

Alpha-investing (Zhou, Foster, Stine, & Ungar, 2005), and the feature

redundancy and relevancy based method known as OSFS (Wu, Yu,

Hefei, Wang, & Zhu, 2013). However, despite their advantages in fea-

ture selection, they do not capture the structure and correlations

within the groups of attributes. Moreover, Wang et al. suggested an

online group feature selection (OGFS), where the global structure of

the features is considered in selecting the best subset (Wang et al.,

2015). While this is a valuable quality, the use of LASSO in feature

group analysis of their approach has limited capability for the domain

of voxel level decoding of cognitive states due to the issues men-

tioned in the introduction section. We incorporate an online feature

selection method inspired by OSFS and OGFS as the heuristic func-

tion of our greedy algorithm. However, we use a different process for

feature redundancy analysis while considering their interaction

between the voxels and group structure within the clusters. Here we

explain the proposed heuristics for the suggested search approach.

2.4 | Relevance analysis

In order to form the information clusters, informative voxels are

admitted based on relevance analysis process. This can be shown as

the following formula:

F IGURE 1 A schematic plot of an
example region traversed by the
proposed algorithm to detect information
clusters originating from voxel V1 and V2.
The algorithm first creates the
information map for the cluster starting
from V1 from top to bottom, and then
moves to V2 and follows the same
process. The red voxels are the admitted

voxels and the yellow voxels represent
the neighbors of the cluster at each step.
The online spectral relevance analysis is
performed during each search in the
neighborhood layer, and the group biased
mutual information redundancy analysis
is performed before each next search in
the neighborhood layer
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dif = Information IC[vnð Þ− Information ICð Þ ð1Þ

In other words, if the calculated discriminant power of the addi-

tion of the newly arrived voxel vn to the cluster IC is higher than the

information of IC (dif > 0), the algorithm admits vn and adds it to IC. As

the steps of the algorithm show, this relevance analysis is performed

over all of the immediate neighbors of IC, and the relevant subset of

the neighbors joins the cluster to expand it.

As mentioned before, various feature selection methods can be

applied to evaluate features individually. However, in our application,

the objective is to calculate the discriminant power of group of fea-

tures (feature set selection). For this purpose, we used spectral fea-

ture analysis, particularly, group-level trace ratio of between-class

(global) to within-class (local) affinity relationship in the data (Nie,

Xiang, Jia, Zhang, & Yan, 2008). This measure ensures that samples

from the same class have a higher similarity compared with samples

from different classes. Therefore, if addition of a new feature (dimen-

sion) increases this separability, it is considered as an admissible fea-

ture. A main reason for using this measure is its ability in capturing

the global group information within the groups of data.

The spectral feature selection attempts to find a smooth feature

selector matrix based on the notions of class affiliation which mea-

sures the ratio between local and global affinity. In other words, the

higher the following relation, the higher quality is the feature.

Information ICð Þ=
P

ijkzi−zjk2SbP
ijkzi−zjk2Sw

ð2Þ

Where with the procedure of feature selection, the data matrix

X is transformed to Z by the feature space projection, Z = WTX, that is,

Z is a transformation of X, and zi and zj are the corresponding values

of z for data points i and j. Also, Sb and Sw denote the Fisher scores of

between and within class adjacency matrices (Nie et al., 2008) which

are calculated as follows:

Sbð Þij=
1
n
−
1
nl
, if i and jbelong to the same class

1
n
,Otherwise

8>><
>>:

Swð Þij=
1
nl
, if i and jbelong to the same class

0,Otherwise

8<
:

where nl denotes the number of data points from class l. We can also

consider Sb as the adjacency matrix of graph Gb, and Sw as the adja-

cency matrix of graph Gw which represent between-class (global), and

within-class (local) affinity relationship among the data points, respec-

tively. In other words, in both graphs Gb and Gw, the nodes are the

subjects, and the edges correspond to their class affiliation. Fisher

score is a supervised method therefore makes use of the label infor-

mation for constructing the weight matrices Sb and Sw. When the label

information is not available, Laplacian score can be applied for con-

structing the two weight matrices instead.

The degree matrix Dw of the graph Gw (within-class) can be

defined as Dw = diag (Sw) if i = j, and 0 otherwise, and its Laplacian

matrix can be defined as Lw = Dw − Sw (Mohar, Alavi, Chartrand,

Oellermann, & Schwenk, 1991; Wang et al., 2015). Similarly, the

Laplacian matrix of graph Gb (between-class) is defined as

Lb = Db − Sb.

With the property of Laplacian matrix, for a feature

subset(cluster) IC, we can obtain the following equivalence from

Equation (2):

zi−zj
�� ��2Sb =WIC

T XLbX
T� �
WIC ð5Þ

Therefore, Equation (2) can be converted into the trace ratio of

the form below (Nie et al., 2008; Wang et al., 2015):

S ICð Þ=
tr WIC

T XLbX
T� �
WIC

� �

tr WIC
T XLwX

T� �
WIC

� � ð6Þ

And the spectral quality for the arriving feature vi can be mea-

sured by a feature-level spectral score defined below:

S við Þ= wT
i XLbX

T� �
wi

wT
i XLwX

T� �
wi

ð7Þ

Therefore, given the selected feature subset IC, the new arriving

feature vn will be admitted if its inclusion improves the discriminative

ability of the feature subset (calculated via Equation (6)), that is

Equation (1).

2.5 | Redundancy analysis

By performing an intragroup pruning before further expanding the

cluster IC [ vn, the optimal group of voxels Vopt ∈ {IC [ vn} can be

selected. This process further increases the precision of the informa-

tion map by removing residual redundancies as a high quality set of

features should not only be individually relevant, but also should not

be redundant with respect to each other.

For this analysis, we consider the interaction between the

voxels within the clusters to be able to capture the complex

structures among groups of voxels rather than only assessing their

individual predictive power. Therefore, the redundancy score of

each feature is calculated as its mutual information with the rest

of the features in the group which is formulated below

(Brown, 2009).

J =
1

n−1

Xn−1

k =1

I Xn;Xkð Þ ð8Þ

where I denotes the mutual information between two vectors, X is

the set of features, and n is the number of features. A large value of
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J represents high redundancy, that is, low quality of the feature. Also,

the mutual information I is calculated by the following formula:

MI =
X

x∈X

X
z∈Z

P x,zð Þlog P x,zð Þ
P xð ÞP zð Þ

� �
ð9Þ

where x denotes the feature values and z represents the class labels.

2.6 | An efficient implementation

As discussed in the previous section, the proposed approach performs

a set of calculations in every step of the search to investigate every

voxel at the vicinity of the detected feature clusters. Therefore, a

large fraction of the calculations is repeated due to the overlap among

regions, that is, a voxel can be visited multiple times. This significantly

affects the analysis time and can make search over large regions

impractical. We apply this improvement by breaking down the calcula-

tions for every voxel and storing them at hash tables to be later used

in the search process. At every step of the search, the algorithm first

checks if the fragment of calculation encountered during the search

already exists in the tables. If so, it directly uses the previously calcu-

lated values recursively to save time; otherwise, it performs the nec-

essary calculation and stores it in the table for future use. This top-

down approach significantly increases the search time, making precise

information detection on voxel-level resolutions over large search

spaces possible. Time complexity of ICS based on our experimentation

setup is discussed in the discussion section.

For relevance process, based on Equation (7), the majority of

computational burden is on the matrix multiplication XLbX
T. However,

we can make the above matrix multiplication only once, before

starting the search, and preserve the values inside a hash table instead

of recalculating it during search. Due to the property of trace of matri-

ces, the value for each voxel can be easily obtained by looking up the

precalculated values in the hash table.

Moreover, for redundancy analysis, we can break down the cal-

culations of each voxel in Equation (8). This is due to the fact that

the mutual interaction information between each voxel and every

other voxel is a sum calculation, and the individual value of each fea-

ture can be looked up after being calculated and stored once. There-

fore, each time redundancy analysis is being performed on a feature

set IC, for each voxel, the algorithm first checks if the calculation for

it exists in the hash matrices, and only performs the calculations and

saves them if they have not been performed previously. This

memoization process is included in the pseudocode in the Supple-

mentary Information. Note that the calculations for eight based on

this approach are only performed when needed, which is more effi-

cient than precalculating the interactions for each voxel and every

other voxel. This is due to the fact that we are interested in

detecting redundancies within an analytically formed cluster of

voxels which only requires the interaction of voxel being visited

with the members of that cluster rather than its interaction with

every other voxel in the entire search space. As a result, the mutual

information matrix becomes rather sparse. An example of interac-

tion matrix on 100 voxels in Autism Brain Imaging Data Exchange

(ABIDE) dataset is depicted in Figure 2 where each element shows

the mutual information between two voxels in the search space, and

nonzero elements are shown in blue color. As can be seen in that fig-

ure, many cells are empty, meaning that the search did not require

calculation of the interaction between those pairs of voxels. As we

can also observe in that matrix, the density of nonzero elements is

higher in the vicinity of the diagonal which indicates the locality of

search in the vicinity of functional volumes. The size of clusters orig-

inating from each voxel is also illustrated on the right side of

Figure 2. Note that the cluster sizes do not necessarily match the

number of nonzero (blue) cells in each row of the interaction matrix.

This is due to the pruning step that the algorithm performs, which

separates the informative subset of voxels within the cluster during

each redundancy analysis step.

2.7 | Interpretation of the output

The direction of search based on ICS algorithm is guided only by the

underlying information in the search space. This means that emer-

gence of overlapping clusters with different starting points is a possi-

bility in the proposed schema. Therefore, the output of ICS can be

presented as a set of clusters with their measured discriminant scores.

Figure 3 presents a comparison between the outputs of the search-

light procedure with the ICS algorithm after three steps of each

method. As can be seen in that figure which is depicted in two dimen-

sions for suitable demonstration, the output of the searchlight

approach is a map where the value of each voxel represents the infor-

mation of the searchlight surrounding it while the output of ICS is a

set of clusters originated from each voxel. In other words, the infor-

mation of a cluster in ICS process is automatically assigned to the

entire cluster. The same figure also shows how clusters originating

from different voxels can overlap one another in the ICS schema. The

separated clusters on the right show a representation of the actual

output where each cluster bears a certain information value. There-

fore, each cluster is assigned an information score, and each voxel can

be associated with multiple clusters as various combinations of fea-

tures bear different predictive power. From a predictive modeling

point of view, each information cluster can be considered as a feature

whose information value represents its classification quality. There-

fore, a cluster with high information value is more suitable for predic-

tion and diagnosis purposes.

3 | EXPERIMENTAL RESULTS

3.1 | Experimental setup and data

The source code of the proposed method is available at https://

github.com/ThisIsNima/ICS. All the experiments were performed on

an Intel Core i7-3370 CPU, 3.40 GHz with 32 GB of RAM.
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In order to evaluate the proposed approach, we first derived the

information map of the fMRI datasets of two case studies based on

the suggested algorithm as well as the searchlight and LASSO within

generalized linear model procedures as the base line, and then

selected the clusters which provide above chance (bigger than 50%)

information for one setting, and their top 50 clusters for another

experimental setting as the classification features. Fivefold cross-

validation was performed during the feature-selection phase for each

of the three approaches. Then, we compared the area under the curve

(AUC) of a classifier which was trained on the three generated feature

vectors to assess the quality of the generated features on the same

dataset. For this purpose, we create two case studies using real fMRI

data as well as a synthetic dataset.

The first case study includes a real fMRI dataset of 683 subjects

from the publicly available ABIDE database (Di Martino et al., 2014).

This worldwide multisite database includes resting state fMRI images

F IGURE 2 An interaction matrix after a complete search over 100 voxels. Nonzero elements are depicted in blue color. The right figure
illustrates the size of clusters originating from each voxel

F IGURE 3 (a) An illustration of the steps and output of searchlight procedure compared with the ICS algorithm. The gray voxel is the search
sphere center voxel in the searchlight method, and the starting voxel in ICS algorithm. The radius for searchlight in this schematic illustration is
one voxel, and the information of the searchlight sphere, denoted by a specific color for each sphere is assigned to the voxel at the center of the

sphere, that is, each voxel in the output map has the same color (information) as its search sphere. On the other hand, the output of the ICS
method is a set of clusters expanded from the starting voxel through a data-driven heuristic. The information of each cluster is demonstrated by a
specific color. (b) Left: An example illustration of overlapping clusters created by ICS. Right: The same clusters depicted individually. The voxel
indicated by black dots are the starting voxel vs which are expanded based on the discriminant analysis heuristic, resulting in a specific
discriminant score for each cluster
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of 370 healthy subjects, and 313 subjects diagnosed with Autism

spectrum disorder (ASD). Also, despite the variances existing in this

dataset due to diversity of data sources, we performed the analysis on

the subjects as one group of data. Previously preprocessed rs-fMRI

data were downloaded from the ABIDE database. This dataset was

selected from the C-PAC preprocessing pipeline. The fMRI data were

slice time corrected, motion corrected, and the voxel intensity was

normalized using global signal regression. As mentioned in Section 2,

the input to the algorithm is the set of activation time courses of

every voxel averaged over time, that is, and M × N matrix, where M is

the number of subjects and N is the number of voxels in the search

space.

To present the experimental results, we first compare the whole

brain analysis performance, and for further investigation, we assign

the search space to be regions of interest which are widely believed

to play a crucial roles in ASD, namely the hippocampus, amygdala, and

F IGURE 4 Top: A comparison of the above chance accuracy clusters derived using the searchlight process (top row), least absolute shrinkage
and selection operator (LASSO) (middle row), and the ICS algorithm (bottom row) on the Autism Brain Imaging Data Exchange (ABIDE) data set.

Major differences between the three maps are indicated by the red circles. In case of overlapping clusters generated by ICS, the clusters with the
highest predictability were selected for this visualization. Bottom-left: Classification performance on full-brain search space for ABIDE dataset
based on the above chance clusters as the features. Bottom-right: Classification performance on full-brain search space for ABIDE dataset based
on the top 50 clusters as the features. The train-test population for both settings was 546–137, respectively
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cerebellums (Baron-Cohen et al., 2000; Bauman & Kemper, 1985;

Fatemi et al., 2012; Schumann et al., 2004). The automated anatomi-

cal labeling (AAL) atlas was used to extract the regions of interest.

The second case study included simulated data where time

courses of an average fMRI data with two conditions were generated

for a population of 1,000 subjects based on values extracted indepen-

dently from a Gaussian distribution for four different sizes of search

spaces of size 100 voxels; 500 voxels; 10,000 voxels; and 30,000

voxels. Also, noisy values were added to the signal with the con-

straints of realistic degree of correlation between adjacent voxels. A

spatial pattern of response was then introduced to the two conditions

which faded in and out according to the average temporal pattern of

the cardiovascular response pattern among adults.

3.2 | Prediction results

The prediction results of the proposed approach are provided in

Figures 6 and 7 where the area under the receiver operating charac-

teristic curve is used as the evaluation measure.

After the discriminant scores of the clusters are revealed, the

clusters with above chance information and the top 50 clusters were

used for classification in two settings. Note that a cluster was created

based on the ICS approach, the LASSO regularization method, and the

searchlight process for each voxel where in ICS, the cluster was

expanded from each voxel vi, and for the searchlight procedure, it was

the searchlight that encompassed each voxel vi by a certain radius,

and for LASSO, it is the single voxels that are found to be significant

in relation to the dataset labels. Similar spectral discriminant score of

the relevance analysis in ICS was used as the analytical measure for

the searchlight approach to make an appropriate comparison between

the two approaches. In other words, the spectral discriminant score of

each group of voxels surrounded by a search sphere was assigned to

the voxel at the center of it. Based on both methods, each cluster con-

tains an information value. The data were split in to train and test

segments where 80% of the data were used for training, and 20% for

testing. The information clusters were extracted from the training set.

For the first setup, clusters with over 50% discriminability power were

selected from the outputs of all three methods, and for the second

setup, top 50 clusters (voxels in case of LASSO) constituted the fea-

ture vectors, thus generating three feature sets for each of the two

settings. Then, an SVM model was trained based on each of the fea-

ture sets, and was used to predict the labels of the test data. The rea-

son for using a classification model (SVM) different than the

information mapping models is to validate the generalizability of the

analysis.

3.2.1 | Full brain analysis results

A visualization of the informative clusters (above 50% information)

detected by ICS as well as the searchlight approach and LASSO reg-

ularization is presented in Figure 4. As can be seen in that figure,

the above chance clusters presented by both the searchlight proce-

dure and LASSO regularization show a lower discriminant score

(maximum: 57.7%, average: 53.5% for searchlight, and maximum:

61.3%, average: 52.2% for LASSO) compared to the ICS clusters

(maximum: 73.1%, average: 69.8%). Also, while there are a number

of regions where all three approaches detect similar informative

areas, ICS detects an arrangement of voxels with a group structure

which shows an increase in the information. These regions include

the posterior cingulate cortex, Wernicke's area, the amygdala, and

left insula. Furthermore, ICS detected clusters with above chance

information that the compared approaches were not able to

detect (their detected information were below 50%). These regions

include portions of the cerebellum, and the anterior cingulate cortex

(ACC). These results are in line with a number of previous studies

on ASD.

For example, the role of abnormalities in cerebellum from both an

information mapping point of view and cortico-cerebellar functional

F IGURE 5 Comparison of
classification area under the curve (AUC)
with SVM between ICS, least absolute
shrinkage and selection operator (LASSO),
and searchlight with voxel radius set to
3 for left Crus II of the cerebellum (region
93 per automated anatomical labeling
[AAL]) with 573 voxels

2272 ASADI ET AL.



connectivity in detection of ASD has been demonstrated in several

studies (Ramos, Balardin, Sato, & Fujita, 2018; Traut et al., 2018).

Moreover, Cascio et al. found that the ASD adults were

underresponsive to the pleasant and neutral tactile stimuli while

showed greater activation in the posterior cingulate and insula in

response to the unpleasant tactile stimuli (Cascio et al., 2012). Fur-

thermore, numerous studies demonstrate that abnormalities in activa-

tion patterns and functional connectivity in the insula and ACC

contribute to ASD (Zhou, Shi, Cui, Wang, & Luo, 2016). Therefore, the

results of this analysis further demonstrates that from an information

mapping point of view, the activation patterns of the mentioned areas

can prove more valuable in detection of ASD.

Classification AUC of the three approaches using both the above

chance features as well as the top 50 features were also measured

after an SVM model was trained based on the three feature vectors

for each setting separately. The search space for this analysis is the

entire brain. For the searchlight method, radius values from 1 to

10 voxels were examined, and the highest performance, which

belonged to the search sphere of three voxels, was selected. For

LASSO, the λ value was set to 0.001. As can be seen in that plot, the

classifier trained on the ICS features on both settings significantly out-

performs the classifier trained on the searchlight and LASSO features.

The precision of the three information decoding approaches on

synthetic data is provided in Figure 10 where the generated datasets

F IGURE 6 Test area under the curve (AUC) for classification with SVM of the ICS algorithm, least absolute shrinkage and selection operator
(LASSO)-based features, and the searchlight method with different search radii for right and left hippocampus and amygdala from the Autism
Brain Imaging Data Exchange (ABIDE) dataset
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contain 100; 500; 10,000; and 30,000 voxels. Similar to the real

dataset, fivefold train-test validation was also arranged for this set of

experiments. Therefore, the data for 800 subjects were used for infor-

mation mapping, and the remaining 200 subjects were used for classi-

fication test based on the top 50 informative features according to

the analysis on the training set. As can be seen in Figure 10, the ICS

method improves the classification accuracy over the compared

approaches in all four setups.

3.2.2 | Cluster level analysis results

The classification performance of the three approaches can also be

assessed in smaller search spaces with more specific topological prop-

erties. This analysis is important due to the fact that assignment of a

fixed searchlight radius on large search spaces might guarantee excel-

lent performance in specific regions while underperform in other

regions. In Figure 5, the classification accuracies based on every

feature within the left Crus II of the cerebellum (Region 93 per AAL)

are compared among the three methodologies as an example. Analyti-

cal results of more regions are provided in the Supplementary Infor-

mation. In that figure, the AUC value assigned to every voxel for the

searchlight method is the calculated AUC that its search neighbor-

hood with three voxel radius provides, that is, the information of the

individual clusters (searchlights). For ICS, this value for every voxel

corresponds to the measured AUC for the cluster originated from it,

and for LASSO, the feature vector contains the voxels found to have

the highest predictive powers. Five runs of analysis based on both

methods are presented in that figure, and due to the fluctuations in

the AUC values as a result of random selection of the train-test sam-

ples, the average AUCs are indicated by the black line. As can be seen

in that figure, ICS consistently demonstrates superiority in terms of

classification accuracy compared to the other two approaches. More

comparisons of the three mapping methods on specific regions of

interest are provided in Figures 6 and 7, which further displays

improvement of information map accuracy from the ICS method.

F IGURE 7 Area under the receiver operating characteristic (ROC) curve for synthetic datasets of size 100 (a); 500 (b); 10,000 (c); and 30,000
(c) voxels based on the top 50 features according to the three approaches
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F IGURE 8 Detection results obtained by all methods using the dataset with 25% simulated atrophy

F IGURE 9 Information maps created through searchlight (top row), least absolute shrinkage and selection operator (LASSO) (middle row) and
ICS (bottom row) approaches. (a) The voxel-level map of left Crus II of the cerebellum (Region 93 per automated anatomical labeling (AAL)) and
(b) belongs to Cerebellum 4 (Region 97 per AAL). For both regions, two dimensional subsegments (100 by 100 voxels) of the information maps
are depicted in this figure to facilitate readable illustrations. Moreover, five sample information clusters derived from these maps through the ICS
approach are depicted on the sides of the maps. In case of overlaps, the information clusters with higher quality (darker red) overshadow the ones
with lower information
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The experimental examinations of the proposed information map-

ping algorithm shows a significant enhancement over the searchlight

procedure over both real and synthetic datasets. The higher classifica-

tion test accuracy of ICS points to the data-driven advantage of iden-

tifying the informative combination of voxels that form various

informative clusters. This is because besides considering the combina-

tion of the voxels in their proximity, the formation structure of the

groups of voxels as well as their interaction with one another also play

important role in the information they provide. Moreover, redundant

voxels are dynamically removed by ICS, which contributes to further

enhance the precision of the discovery. These qualities are assessed

through the online spectral feature evaluation and the spatially biased

mutual information procedure. In other words, the ICS increases the

information cluster dynamically as it searches for informative voxels

to recruit for expanding the cluster while reassessing the MB in the

existing feature set and removing the redundancies. While high preci-

sion is a crucial quality for information mapping of the brain, the pro-

posed procedure benefits from other advantageous characteristics

which are discussed in the next section.

3.3 | Detection of simulated effects

In order to assess the sensitivity of the proposed method in detecting

the underlying effect of interest, we tested it in a simulated setting

where 25% atrophy where imposed on the frontal lobe mask. Then,

we compared the three methods to the ground-truth by mapping their

true and false positive rates and well as false negative detection rates.

The result of this analysis is depicted in Figure 8. As can be seen in

that figure, the rate of false positive in the searchlight approach is

higher than both ICS and LASSO-based approach while the false neg-

ative rate in LASSO is higher compared to ICS and searchlight. This

can be explained by the fact that, as mentioned in Section 1, the

searchlight method tends to declare a subregion with a few highly

informative voxels as highly informative. On the other hand, the

higher rate of false negatives in LASSO can be explained by its ten-

dency to punish the features with smaller significance. Moreover,

LASSO does not take the local characteristics of the voxels and their

neighborhood into account, which can further skew its selection of

the informative voxels.

3.3.1 | Spatial specificity

Spatial specificity can be defined as the ability to extract independent

information from two separate regions in close proximity. As

explained in Section 2, ICS detects groups of voxels whose combined

activation results in an information cluster that is distinguishable

between two or more groups of subjects. Therefore, each such group

of voxels is assigned a unique information value. This process is in

contrast with the searchlight information assignment where the infor-

mation of a neighborhood with predefined size is assigned to the

voxel at the center of it. Figure 9 illustrates information maps gener-

ated through searchlight and ICS approach for two regions

corresponding to the cerebellum. In case of overlapping information

clusters in ICS, the segments with higher information overlay regions

with lower information to facilitate readability of the map. As men-

tioned previously, the information detection and assignment proce-

dure of ICS offers a higher specificity, which can be observed in

Figure 9.

4 | DISCUSSION

We suggested a new MVPA method with the objective of increasing

the precision of the voxel-level information map while eliminating sev-

eral constraints including the requirement for parameter tuning. We

proposed a data-driven framework which performs a search based on

a data-driven heuristic function, and starting from each voxel, dynami-

cally detects the appropriate formation of its combination with other

voxels in its vicinity.

Since ICS is able to pick up clusters with irregular shapes (and

each voxels performance is not affected by its surrounding neighbors),

when combined with high-resolution scans, it can be used to:

(a) associate function with its underlying fine-grained structures such

as sulcal and gyral morphology (i.e., the irregular shapes of functional

maps can be compared with structural T1 images to link morphologi-

cal and functional variation); (b) accurately detect the functional

boundary across representations or tasks/conditions and compare

them with other boundary mapping approaches; and (c) provide

insights for some fundamental but unresolved brain physiological

questions such as whether information in the brain is represented in a

continuous or discrete form. The traditional searchlight method mixes

and merges neighboring voxels information and thus is inherently

biased for a continuous gradient-like representation form, but ICS is

not limited to such bias (Tee & Taylor, 2018).

F IGURE 10 Computation time of ICS on five data set sizes
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4.1 | Information of voxel clusters is discovered
precisely

Due to the data-driven expansion of clusters around each starting

voxel, their calculated information is automatically assigned to the

individual clusters without redundant voxels. Therefore, exaggeration

of the spatial boundaries of informative areas is avoided. This prop-

erty removes the possibility of discontinuous detection, that is, exis-

tence of one or few highly informative voxels dominating the

information of a region which increases the possibility of overfitting.

4.2 | Minimal parameter tuning is required

The elimination of tuning parameters such as searchlight shape (spher-

ical or cubical) and radius, or machine learning hyper parameters

(example: deep learning-based methods) or regularization parameters

(the λ value in LASSO or elastic net) not only increases the generaliz-

ability of the results, but also increases the efficiency of analysis. The

latter point is due to the fact that the requirement for multiple runs of

the analysis with different searchlight radii and then selecting the

highest performing parameters is removed. Moreover, this property of

the ICS algorithm resolves the issue of heterogeneous accuracy on

various regions which normally occurs due to assignment of a single

searchlight radius for larger brain regions with various topological

characteristics. Plus, parameter tuning requires researchers to have

advanced expertise of the methods they intend to use, especially with

regards to manifold learning.

4.3 | The shape of the clusters is not bound by any
constraints

The shape of the searchlight sphere can affect the information detec-

tion precision. For example, in the presence of an elliptical cluster, a

spherical searchlight could fail to detect its complete boundaries, thus

creating an imprecise information map. However, the shape of the

clusters created by ICS merely depends on the information of the

voxels and their combination with the voxels in their vicinity. This can

specifically be a useful property for clusters located at the edges of

the search space that are more prone to irregular shapes.

4.4 | Prediction accuracy is enhanced
simultaneous to cluster detection

The search space traversal of ICS is navigated toward voxels that

increase the information of the clusters as its objective is to solve

the optimization function that finds the combination of neighbor-

ing voxels that maximize the information. Therefore, starting from

each voxel, the search continues as long as possibility exists for

enhancing the discrimination power of the cluster by adding useful

voxels.

4.5 | ICS is applicable to both supervised and
unsupervised settings

Due to the spectral discriminant analysis incorporated in ICS, it is

robust to problem settings with regards to labeled or unlabeled

datasets. As explained in Section 2, switching to the unsupervised

problem setting can be performed during construction of the weight

matrices. In other words, Fisher score can be used to take advantage

of label information for constructing the weight matrices while

Laplacian score can be leveraged for constructing the two weight

matrices when no label information is presented. This characteristic

further increases the adaptability of ICS to different problem settings

over other group level MVPA approaches.

4.6 | Additional analysis is not required for
interpretation of the information map

Due to data-driven assignment of discriminant scores on the voxel

level, clusters with clear boundaries are generated by the ICS method.

Therefore, unlike some of the other MVPA methods, complementary

tests are not required to detect informative voxels within the clusters.

Moreover, the proposed approach provides higher intuitiveness com-

pared to methodologies often considered as “black box” such as deep

learning-based approaches or regularization-based methods.

4.7 | State-of-the-art feature set analysis
approaches can be incorporated in ICS

While we employed spectral feature set analysis for the expansion

step (relevance analysis) and the trace ratio procedure for the pruning

step (redundancy analysis), other state-of-the-art approaches can be

incorporated in the ICS online search schema. Therefore, within the

same spatial feature cluster search algorithm, other feature set analy-

sis process can be applied, which indicates the flexibility of this

approach.

4.8 | Global optimality discussion

The conventional step-wise greedy search method for feature selec-

tion yields suboptimal feature subsets due to falling in local minima

(Vafaie & Imam, 1994). This is due to the fact that the choice of fea-

tures depends on the order of their selection. However, in the

approach proposed in this article, for every starting voxel, multiple

useful neighbors are admitted at each neighborhood layer (Step 2 of

the algorithm), therefore reducing the chance of falling in local optima.

Moreover, the output of the algorithm includes the discovered infor-

mation clusters starting from every voxel in the search space. In other

words, Steps 1–4 are performed for every voxel in the search space,

resulting in a more thorough search over possible voxel combinations.

While this algorithm does not perform an exhaustive search over
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every possible combination of voxels, these two properties signifi-

cantly decrease its chance of falling into local optima. In addition,

global information within clusters is taken into account during both

spectral relevance and redundancy analysis. Note that the problem of

finding the best set of features is an NP-hard problem which is a sig-

nificantly more complex problem than distance-based graph search

approaches. This is due to nonlinear relations between the features

compared with the notion of physical distance which can be measured

by accumulating the subdistances in the search space.

4.9 | Time and memory complexity analysis

A brute force implementation of the proposed search algorithm would

require multiple calculations for every attribute to be performed repeat-

edly due to the overlap among information clusters. The time complexity

of mutual interaction information is exponential in the number of vari-

ables (O(n2), n being the number of voxels in the search space). Therefore,

repeating its calculations can make the search significantly slow. How-

ever, by exploiting the existing overlaps among information clusters, we

proposed an efficient implementation where, if needed, each of these cal-

culations only takes place once for each voxel. Furthermore, by consider-

ing the spatial proximity of voxels, that is, calculating the interaction

between voxels within clusters rather than the entire search space, the

analysis time is further reduced. As a result, the time complexity is asymp-

totically smaller than O(n2), which is the worst-case scenario. The majority

of calculation of the spectral relevance analysis is calculated prior to sea-

rch by avoiding repetition of the matrix multiplications in Equation (9).

Time complexity of spectral intragroup selection with n dimensions

(in our case, voxels) is O(n). Another point worth mentioning is that the

redundancy analysis is only performed after the set of high quality neigh-

bors at each proximity layer are admitted to the feature cluster, which

facilitates a more rapid traversal in the search space. The worst-case sce-

nario happens when the algorithm visits every voxel for discovering each

information cluster, meaning that the entire search space increases the

information of the initial cluster. However, in practice, this is a rare case.

In fact, our empirical results showed that this algorithm traverses a

much smaller subspace of the search space, which increases the sparsity

of the interaction matrices, therefore reducing its time complexity. Never-

theless, since the algorithm is completely data driven, its computation

time on a given dataset highly depends on the data itself. However, the

algorithms run time in our heaviest experimental setup, which was the

whole-brain analysis for the entire dataset, was conducted within few

hours, which is within the norm of feasible analysis, and significantly

faster than the training or inference time of a multidimensional CNN. The

computation time of ICS based on our experimental setup on datasets of

five different sizes are illustrated in Figure 10.

As discussed above, ICS takes advantage of prior calculation of

matrices as well as the regional calculations to decrease the number

of permutations in computation. The memory requirements of the

prior calculations are directly dependent on the size of the area to be

searched. For the worst-case scenario, which is when the mutual

information between every other voxel is required, a nonsparse n × n

matrix is created where n is the number of voxels in the entire search

space. However, as mentioned previously, the regional information

calculations in ICS normally generates a sparse matrix.

4.10 | Limitations

Despite the mentioned advantages, ICS bears certain limitations

which we point out in this section.

In ICS, the heuristic measure for cluster expansion is the discrimi-

nation power of the combined information of a group of contiguous

voxels between groups of subjects. This calculation is appropriate for

group level analysis, thus imposing a limitation to ICS for subject level

fMRI analysis which is also desirable due to its consideration of per-

sonal variations.

Another limitation of this approach is the fact that the activation

time series are averaged to facilitate the search through the single

values for each voxel. This transformation ignores the temporal

dynamics among the active regions. Future improvements to the pro-

posed approach can consider the temporal dynamics of activation for

detection of clusters of information.

Moreover, the case study data used in this work was derived from

resting state fMRI, which constitutes only one type of MVPA. Task

fMRI in which temporally separated events are modeled, is another

commonly analyzed MVPA case. However, a large enough dataset of

task fMRI corresponding to different neurological conditions for such

analysis is difficult to obtain. As more datasets are collected or avail-

able publicly, this issue can be mitigated in the future.

Another current limitation of ICS is the fact that its present design

is only applicable to cross-sectional studies. As a future extension of

this approach, this approach can be incorporated into multimodal

studies where features are not limited to one imaging modality.

Reducing the discussed limitations requires further methodologi-

cal explorations and logistical improvements. As future work, our

objective will include formulation of temporal dynamics of functional

connectivity as well as proposing subject level information measures.
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