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Abstract

Representational similarity analysis (RSA) is a computational technique that uses pairwise comparisons of stimuli to reveal
their representation in higher-order space. In the context of neuroimaging, mass-univariate analyses and other multivariate
analyses can provide information on what and where information is represented but have limitations in their ability to
address how information is represented. Social neuroscience is a field that can particularly benefit from incorporating RSA
techniques to explore hypotheses regarding the representation of multidimensional data, how representations can predict
behavior, how representations differ between groups and how multimodal data can be compared to inform theories. The
goal of this paper is to provide a practical as well as theoretical guide to implementing RSA in social neuroscience studies.
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Introduction
Neuroimaging has allowed social neuroscientists unprece-
dented access to the neurobiological basis of social behavior. For
many years, the neuroimaging literature in social neuroscience
was dominated by studies using mass-univariate statistical
techniques. After some time, this was partially supplanted
by multivariate techniques, one of which is the focus of this
paper: representational similarity analysis (RSA). Although RSA
is over a decade old, its adoption in social neuroscience has been
limited. The goal of this paper is to provide an easy guide to RSA
with an emphasis on how it can be used in social neuroscience
to test hypotheses and inform theory.

It is already known that mass-univariate neuroimaging tech-
niques are limited in their ability to analyze multidimensional
information. Mass-univariate methods in functional magnetic
resonance imaging (fMRI) are typically used to compare the
neural activation of one group of stimuli to the neural activation
of another group of stimuli, by creating a contrast that averages
the response of stimuli within a group. For example, if one

wants to study the neural representation of social status, the
mass-univariate contrast will show us regions of the brain that
respond more strongly to high social status by subtracting the
neural activation for low status faces from the activation for
high status faces (Chiao et al., 2009). However, this only tells us a
little bit about the neural processing of social status, as relying
on an overall response magnitude across voxels in a region
provides limited information. A brain region may have a minimal
overall, but consistent, response to low status faces, that is
overshadowed by a much larger overall response to high status
faces (Haxby, 2012). We are unable to determine, for instance,
if brain regions that respond more strongly for one category
might also have some sensitivity to information from another
category (Haxby, 2012). We also do not know if regions represent
information about both categories, but in different ways, that
the task did not account for (e.g. attention, motivation). In addi-
tion, some functionally heterogeneous areas can be commonly
activated by multiple tasks and we cannot determine whether
the activated brain region is specialized for information integra-
tion (e.g. for instance, the anterior temporal lobe [ATL] appears

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article-abstract/14/11/1243/5693905 by guest on 12 April 2020

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://academic.oup.com/


1244 Social Cognitive and Affective Neuroscience, 2019, Vol. 14, No. 11

to integrate social, semantic and emotional processing; Olson
et al., 2007), whether it represents the same information but
along different dimensional spaces (e.g. self-relatedness and
positivity are co-represented in medial prefrontal cortex [MPFC];
Chavez et al., 2017) or perhaps there is just a lack of spatial
resolution to disentangle specialized sub-neural clusters (e.g.
social and physical pain are represented next to each other
but separately in anterior cingulate cortex [ACC]; Woo et al.,
2014). Lastly, when multiple neural regions respond to the same
category, we cannot differentiate the functional specificity of
these regions. With univariate approaches, there is no infor-
mation about what is specifically represented in the activated
regions or how information is architecturally represented, and
this is partially due to the loss of information caused by signal
averaging across many voxels (Norman et al., 2006).

To address some of these limitations, multivariate analyses
have been introduced (Haxby et al., 2001; Lewis-Peacock and
Norman, 2014). Multivariate pattern analysis (MVPA) focuses on
whether information relating to specific stimuli is encoded in
patterns of activity across multiple voxels. It does not average
signals but rather jointly analyzes multi-voxel data to predict
or characterize states of the brain (Haxby et al., 2001; Lewis–
Peacock and Norman, 2014). In a typical implementation of
MVPA classification, a linear or non-linear classifier is trained
to distinguish stimuli for different categories within a subset of
the data. The trained model is then tested by using it to predict
the categories of the remaining (independent) data. If a stimulus
can be predicted, or decoded, solely from the pattern of fMRI
activity, there must be some information about that stimulus
represented in the brain region where the pattern was identified
(Chadwick et al., 2012). Accordingly, MVPA goes beyond the sim-
ple task/state level of inference that mass-univariate analysis
usually draws about a brain region (e.g. ATL plays some role
in identifying people as compared to objects) while also boost-
ing the sensitivity to reveal a region’s representational content
(e.g. the ATL represents individual person identity; Wang et al.,
2017).

Although MVPA classification is a powerful decoding tool
that allows us to infer whether category-level representation
occurs in a region, it is relatively agnostic about what the specific
information is and in what format that information is organized.
There are many aspects of the stimuli or the behaviors (e.g.
attentional differences or low-level visual feature differences)
that can cause a brain region to successfully classify differ-
ent categories, and MVPA classification has limited power for
disentangling these differences. A confusion matrix analysis
can be generated to determine if a classifier for a brain region
responds similarly to different categories, leading to an indirect
measure of the geometry of the representation of the categories
(Liang et al., 2013). However, this approach is still limited by
the constraints of classification, in that it requires many rep-
etitions of trials to train the classifier. In addition, statistical
inference on MVPA classification is prone to false positives when
the number of categories is high but the sample size is low
(Combrisson and Jerbi, 2015; Jamalabadi et al., 2016). Moreover,
neural representations of the social world often entail a contin-
uous dimension of information (e.g. mental states or subjective
feeling; Nummenmaa et al., 2018; Tamir et al., 2016) and a large
number of features, such as body parts (Bracci et al., 2015),
stereotype knowledge (Stolier and Freeman, 2016) or action per-
ception (Urgen et al., 2019; Wurm et al., 2017). MVPA classification
can examine these characteristics in a coarse and complicated
way (e.g. via confusion matrix analysis), but stimuli must be
categorized in an unnatural way and the individual differences

between every stimulus are typically lost. This loss of within-
category features limits the number of features or conditions
that can be representationally explored, to only the between-
category features. Regression-based MVPA decoding analyses
alleviate some of these issues, such as being able to explore
the dimensional representation of information. However, these
techniques still require a large number of trials and these tech-
niques are not sensitive to the representation of information
along a multi-dimensional space. Thus, the family of MVPA
decoding analyses, including classification and regression, lacks
the ability to explore the entire representational space between
stimuli (Diedrichsen and Kriegeskorte, 2017).

Another type of multivariate method—RSA—lends itself to
looking at higher-order representational space as well as test-
ing different computational models of cognition (Haxby et al.,
2014; Kriegeskorte et al., 2008a). In RSA, the multivoxel pat-
tern responses of stimuli, derived from the same method as
classification-based MVPA, are compared to each other, provid-
ing a direct higher-order representation of the stimuli. In our
example, RSA can be used to compare status representations
across multiple dimensions (e.g. economic status vs career sta-
tus vs reputational status vs body-gesture status vs face-based
status; Koski et al., 2017). From this perspective, mass-univariate
analyses provide the first step to understanding the underlying
architecture involved in cognitive processes by showing which
areas ramp up in activity, while MVPA decoding can provide
more detail about which areas contribute to a process and
some information on how areas can distinguish information.
RSA goes further than both by providing information about how
regions of the brain represent information, by directly com-
paring individual responses to get a complete picture of the
structure of representation of information across some higher-
order dimension space, hereby referred to as the geometric
representation of information. Different from MVPA confusion
matrix analysis, RSA uses distance measures instead of a classi-
fier to characterize the representational space in brain regions
and has the potential benefit of revealing the representation
of individual stimuli and not just categories of stimuli. With
this full representation via RSA, all features of stimuli can be
characterized, whereas MVPA decoding only reveals a subset
of features (Diedrichsen and Kriegeskorte, 2017). Ultimately, the
comparison between MVPA decoding and RSA traces to the dis-
cussion benefits and limitations of decoding vs encoding models
(Kriegeskorte and Douglas, 2019). A comparison between mass-
univariate analyses, MVPA decoding analyses and RSA can be
found in Table 1.

A unique feature of RSA is its ability to compare data from
different sources (see Figure 1). For instance, RSA can be used
to compare data from behavioral measures related to social
scenes (e.g. ratings, reaction times, error rates or latent semantic
analysis indices) and data from neural activations in response to
the same stimuli. Indeed, this comparison can even be done for
data from different spatial scales (e.g. single-neuronal recording
vs regional activation) and data from different species (monkey
vs human) (Kriegeskorte et al., 2008b). When linked to computa-
tional models, RSA can study not only the fine-grained represen-
tations of social information but also explore the dynamic neu-
ral computations that undergird social processing (e.g. bottom-
up vs top-down processes; Brooks and Freeman, 2018). RSA is
best applied to stimuli or states that can be systematically
‘dimensionalized’. In vision research, stimulus dimensions such
as hue, luminance and line orientation can be parametrically
manipulated and the representational sensitivity of visual cor-
tex measured. In social neuroscience, many stimuli can also be
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Table 1. Comparison between different fMRI analytic approaches

Mass-Univariate MVPA Decoding RSA

Granularity of
representational inference

Task/state level of information Category and item level of
information

Item level of information

Handling multivoxel data Averaged across voxels Jointly analyze across voxels No requirement
Inferred format of representation Discrete categories Classification for discrete

categories, regression for
continuous dimensions

Discrete categories and
continuous dimensions

Implementation Contrast subtraction Train-test learning phase Representational dissimilarity
matrix

Algorithm Linear Both linear and non-linear
classifier

Mostly linear

Data modelling in GLM Single-category modelling and
aggregated across runs

Single-category modelling and
then cross-validate across runs

Single-trial modelling, within- or
between-runs

Optimal study design Factorial design Only few numbers of stimulus
categories (<5), each with many
repetitions for train-test learning

No limits on number of categories,
stimuli with many features

Testing computational models Easy (but univariate encoding
models have to fit a model first
using separate data)

Difficult (due to its decoding
nature)

Easy (due to its encoding nature)

Linking multimodal data Difficult Difficult Easy

dimensionalized, for instance faces can vary on several dimen-
sions (e.g. attractiveness, age, gender and trustworthiness; Dobs
et al., 2019; Freeman et al., 2018; Stolier and Freeman, 2016; Stolier
et al., 2018b), actions can vary on kinematics, effectors, transitiv-
ity and intentions (Urgen et al., 2019; Wurm et al., 2017), social
concepts can vary on affective and psycholinguistic dimensions
(Thornton and Tamir, 2017) and friendships can vary in their
social distance and network topology (Parkinson et al., 2014;
Parkinson et al., 2017). With this new tool, researchers can even
investigate complex representations such as morality (Pegado
et al., 2018a; Pegado et al., 2018b; van Baar et al., 2019; Volz
et al., 2017; Wasserman et al., 2017) and the development of object
concepts (Long et al., 2018).

Nuts and bolts: how to do RSA

RSA allows us to explore the underlying representational con-
tent of brain regions by comparing the neural response pat-
tern (with an emphasis on ‘pattern’) across different stimuli.
The basis of RSA is the representational dissimilarity matrices
(RDMs), which can be created from any type of data one might
have: neuroimaging data, behavioral data or even computational
data. This is an important benefit for analytic flexibility, and RSA
should not be considered an exclusive fMRI technique. There
are already multiple RSA studies in social neuroscience that do
not use fMRI data at all (see Brooks and Freeman, 2018; Costa
et al., 2014; Dobs et al., 2019; Stolier et al., 2018b; Thornton and
Tamir, 2017). Once RDMs are compared across different sources,
RSA has the greatest power to link representational information
between brain data, behavioral data and computational data
(see Figure 1). The analytic pipeline for RSA is actually quite
simple, as outlined in the following paragraphs.

Step 1. Optimize your study design

RSA can be easily implemented in both block and event-related
fMRI tasks (Mur et al., 2009). However, special attention needs
to be given to the spacing of individual trials because the unit
of measure for each type of RDM is an individual stimulus.
This makes RSA unique among neuroimaging methods because
typically in neuroimaging, we group the signals from similar
stimuli to create a contrast.

In fMRI, trials that are closer together will have more corre-
lated signal because of the lag of the hemodynamic response.
To fully capitalize benefits of RSA and effectively compare indi-
vidual trials, it has been suggested that within-run trials should
be randomized between all subjects or if randomization is not
possible, only between-run trials should be compared (Mumford
et al., 2014). Since we are modeling each trial in isolation, we have
to space trials further apart (a jittered design will not help) and
include more trials per run to increase power (Dimsdale-Zucker
and Ranganath, 2019).

Typically, RSA does not require as many trial repetitions
as MVPA decoding, because RSA does not require machine
learning algorithms. In other words, you don’t need to do
training then testing. It is important to note that all possible
stimuli within a domain of interest should be included so
that the representational space is completely explored. For
example, neuroimaging research on semantic memory research
has traditionally omitted social and abstract words from the
stimuli corpus, which leads to findings that fail to include the
entire representational space, and also fails to reveal the roles of
social brain regions in semantic representation and processing
(Leshinskaya et al., 2017; Olson et al., 2007; Troche et al., 2014).
Other suggestions for optimizing RSA experimental design (e.g.
preprocessing, noise reduction, unequal trial numbers between
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Figure 1. RSA combines data from different sources by using a common representational space. RSA is unique in its ability to incorporate data from a variety of

sources. By using a common stimulus set, RDMs can be created from different sources, such as brain data, cognitive models and behavioral data, to analyze the

common representational mapping. Other examples of social neuroscience uses for RSA include combining fMRI, MEG and EEG data to do cross-modality mapping,

network, regional and cellular data to explore cross-scale mapping and data from different populations or species to explore cross-individual and species mapping of

representations.

conditions) can be found in detail elsewhere (Dimsdale-Zucker
and Ranganath, 2019).

Step 2. Construct RDMs

To construct an RDM, all stimuli are compared to each other,
resulting in a matrix that is symmetrical along its diagonal. Stim-
uli can be compared by calculating the similarity or dissimilarity
between stimuli (Kriegeskorte et al., 2008a). Using a measure of
similarity (e.g. Pearson’s r) vs a measure of dissimilarity (1—
Pearson’s r) when constructing RDMs does not have a statis-
tical impact on results, but a dissimilarity measure seems to
be favorable because it is commonly used in other techniques
(e.g. multidimensional scaling, latent semantic analysis) and has
advantages for conceptually understanding the results. Dissim-
ilarity is accompanied by an intuitive organization of stimuli in
space where more dissimilar stimuli are further apart and thus
can be mapped out in a network-style visualization (Haxby et al.,
2014; Kriegeskorte et al., 2008a).

It is also important to consider which similarity/dissimilarity
measure should be used for your type of data. For fMRI data,
it is common to use a similarity measure, such as Pearson or
Spearman correlation, to compare the neural response to two
stimuli classes since these metrics are magnitude-insensitive
(e.g. the magnitude of BOLD signals varies across brain regions).
For behavioral data where measures are not directly compared,
such as when all stimuli are rated on a scale, a dissimilarity

measure, such as Euclidean distance, might be more suitable.
The reliability of Pearson correlations and Euclidean and Maha-
lanobis distance metrics have been compared and found to be
not only reliable among each other but also more reliable than
MVPA classification (Walther et al., 2016). When choosing a simi-
larity/dissimilarity measure, it is important to choose a measure
that is specifically appropriate to the original data. For exam-
ple, it has been recommended that Euclidean distance would
‘not’ be appropriate for finding the dissimilarity of data that is
binary. Manhattan distance should be used instead (Nguyen and
Holmes, 2019). Regardless of which similarity/dissimilarity mea-
sure is used, all RDMs are recommended to be cross-validated as
noise in the dataset can make stimuli more dissimilar than they
are in reality (Walther et al., 2016).

For neural RDMs, the response pattern from a single region
of interest (ROI) is used as the response to correlate between
stimuli. In fMRI, this would be the multi-voxel activation pattern
that is also used in MVPA decoding. The response pattern from
one stimulus is correlated to another, resulting in an r-value.
Dissimilarity between stimuli is calculated as r subtracted from
1 (Figure 2A). For example, the dissimilarity between a stimulus
and itself would be 0, as the correlation between the two stimuli
would be 1. To make this concrete, the dissimilarity between two
social stimuli should be lower than the dissimilarity between a
social and non-social stimulus, in a brain region that makes this
distinction. A matrix is then created where each row depicts a
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Figure 2. Construction of RDMs. (A) An RDM is constructed from neural data by extracting the multi-voxel pattern response from a ROI, from a single participant, for each

individual stimulus. The dissimilarity, or 1 minus the correlation coefficient, is found between all possible stimuli comparison pairs, to create a dissimilarity matrix.

(B) An RDM is constructed from behavioral data by collecting the response from a participant for each individual stimulus. The dissimilarity between all individual

stimuli pairs is found using a distance measure calculation, such as the Euclidean distance. (C) A conceptual model RDM is constructed by pinpointing a feature of

interest from the stimulus set. The dissimilarity matrix represents which stimuli share the common feature and which do not. (D) In the final step of the analysis, the

bRDM and two mRDMs are compared to the nRDM. A noise ceiling (the gray horizontal bar) is calculated to see how well a perfect model would perform. Significance

tests show that the bRDM and the mRDM1 are significantly similar to the nRDM. A pairwise comparison shows that the bRDM performs significantly better than the

mRDM1 and mRDM2, in terms of relating to the nRDM.

vector of the neural response comparisons of one stimulus to all
stimuli, including itself. The matrix is an RDM representing the
dissimilarity between all stimulus neural responses. To increase
power, trials are often repeated and averaged together. Trials
can also be grouped together based on categories of interest,
similar to designs used for mass-univariate analyses or MVPA
classification; however, this is not necessary. RSA has an advan-
tage over other techniques in that it allows for stimuli to remain
ungrouped so that the underlying representational geometry of
the stimuli can be explicitly explored (e.g. mental states; Tamir
et al., 2016). These steps to create a neural RDM can be repeated
for all subjects, and the subject-level RDMs can be averaged
together to create a group-level RDM. Alternatively, RDMs can be
compared on an individual subject level; for example, a subject’s
neural RDM to their behavioral RDM of their ratings from a task.

For behavioral RDMs, the ratings or measures between pairs
of stimuli are compared to create an RDM. Comparisons between
two different behavioral ratings in a task, for instance, valence
or arousal, can be calculated using measures of distance, such
as Euclidean distance (Freeman et al., 2018; Kragel and LaBar,
2016). The RDM is created in the same manner as a neural DMN,
resulting in a matrix that is also symmetrical about its diagonal
and has the same number of rows and columns, as the same
stimuli must be used in both tasks (Figure 2B).

Model RDMs can be used in a few ways depending on
the researcher’s needs. There are two styles of models. One
type, called a ‘conceptual model’, can be used by creating a
matrix based on a presumed relationship between the stimuli
(Kriegeskorte et al., 2008a). A conceptual model RDM highlights
the difference between stimuli along a feature of interest. The
dimensions and stimulus order of a conceptual model RDM

matches the other RDMs that will be compared with the model.
In an example where there are two categories of interest, the
values of the conceptual model RDM will be ‘0’ for stimuli
that are of the same category or share a similar feature of
interest, for instance animate objects, and ‘1’ for stimuli that
are not of the same category or do not share a similar feature of
interest, for instance, animate objects and inanimate objects
(Figure 2C). This is similar to creating a contrast in a mass-
univariate analysis; however, the difference is that in RSA betas
from individual stimuli are first compared to each other, rather
than grouped and averaged together. Conceptual RDMs can also
be created to account for multiple categories or features, based
on some hypothesized relationship between stimuli, such as
faces, non-face animate objects and inanimate objects. In this
example, faces and non-face animate objects will be ‘1’, as they
differ on only one category (face vs non-face), and faces and
inanimate objects will be ‘2’, as they differ on two categories
(face vs non-face and animate vs inanimate). The second type
of model is called a ‘computational model’ where values of an
RDM are outputs of some function or algorithm. For example,
a computational model that mimics the processing of V1 in
humans can be fed images and a computational RDM can be
produced (Nili et al., 2014). This has been done for different
types of stimuli including luminance patterns of images (Cichy
et al., 2016; Kriegeskorte et al., 2008), semantic features of words
(Carota et al., 2017; Chen et al., 2016) and motion trajectory
patterns of action videos (Urgen et al., 2019).

Step 3. Compare the RDMs

A single RDM can be used to complete an analysis, but the
greatest advantage of RSA is the ability to compare RDMs, hence
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the word ‘similarity’ in RSA. RDMs can be compared in a vari-
ety of iterations depending on the researcher’s questions and
hypotheses. In a simple example, a neural RDM and conceptual
model RDM (e.g. social vs non-social) can be correlated to see
how well social information is represented in the neural RDM
(Figure 2D).

Multiple ROIs can be compared to see which region better
represents a category. For example, an RDM constructed from the
BOLD response in inferior temporal cortex would better repre-
sent animate as compared to inanimate objects than a neural
RDM from early visual cortex as the model RDM for animacy
is more similar to the neural RDM in inferior temporal cortex
than in early visual cortex (Kriegeskorte et al., 2008). Comparing
RDMs among multiple ROIs can also reveal the relationships
between their representations (‘representational connectivity’).
In analogy to functional connectivity analyses, this representa-
tional connectivity analysis (when combined with a searchlight
approach) can powerfully inform us which regions are represen-
tationally connected to a given region(Kriegeskorte et al., 2008a).
Just as in RDM construction, instead of using similarity, a second-
order dissimilarity can be used to compare RDMs (Kriegeskorte
et al., 2008a).

RDMs can be quantitatively compared with different metrics,
though it has been recommended that rank-correlation distance
(e.g. Spearman correlation, Kendall’s Tau) should be used since
the noise within each RDM differs based on what the RDM was
created from [e.g. fMRI data, MEG (magnetoencephalography)
data, behavioral measures], therefore avoiding an assumption
of a linear match between the RDMs (Kriegeskorte et al., 2008a).
Similarly, when comparing the performance of multiple model
RDMs (e.g. which is more closely related to the measured neural
RDMs), non-parametric signed-rank test should be used (rather
than the paired Student’s t-test) (Nili et al., 2014). Using these
non-parametric rank-based tests also has the advantage of being
robust against outliers. In order to reduce the likelihood of false-
positive correlations, it is important that the diagonal and off-
diagonal triangle of RDMs be excluded when comparing RDMs,
thereby only leaving the lower or upper triangle of RDMs (Ritchie
et al., 2017).

There are two general steps that should be taken to deter-
mine if RDMs are statistically similar. First, a noise ceiling should
be calculated to determine the maximum possible similarity
between an RDM of interest and the theoretical ‘true’ model
RDM, given the level of noise in the data (for how to compute the
noise ceiling, please read Nili et al., 2014). Second, a significance
test should be done. A popular option is to use a permutation
test, where the labels of the original data are shuffled, and an
RDM is calculated on the permuted labels. The resulting per-
muted RDM is correlated to a second unpermuted RDM, repeat-
edly, in order to find the null distribution under the assumption
that the RDMs are different (Dimsdale-Zucker and Ranganath,
2019; Kriegeskorte et al., 2008a; Nili et al., 2014; Walther et al.,
2016). When RDMs are significantly correlated, researchers can
articulate clearer conclusions by stating that the representation
of stimuli is more similar in two brain regions, whose RDMs are
significantly correlated, than in a third brain region, whose RDM
is not significantly correlated with the others.

A common technique for exploratory brute-force search
of neural representations is whole-brain searchlight RSA.
The premise of this technique is similar to MVPA decoding
searchlight in which a spherical ROI is made around each voxel
in the brain for the analysis (Kriegeskorte et al., 2006). A neural
RDM is created for each spherical ROI, and this is compared to
other RDMs of interest (e.g. behavioral or model RDMs). Maps

can be created to show which voxels across the whole brain are
significantly related to the comparison RDMs (Tamir et al., 2016).
When using a searchlight, testing for significance is done in the
same manner as traditional fMRI methods, such as by using
an FDR/FWE correction, Monte Carlo simulation or permutation
test (Carlin et al., 2011).

Social neuroscience problems for which
RSA is useful
RSA can be used to investigate social categories and
dimensions

RSA has been used to test hypotheses about the neural rep-
resentation of social categories and dimensions (Chavez and
Heatherton, 2014; Freeman et al., 2018; Pegado et al., 2018; Vida
et al., 2017; Wasserman et al., 2017). In most of these studies, the
stimuli that are compared can be dimensionalized along some
predefined metric. For instance, Parkinson et al. (2014) used RSA
to ask whether social distance (how psychologically close you
are to various friends and acquaintances), physical distance (the
proximity between two objects in space and temporal distance
(how far apart two events are in time) are represented in a single
domain-general region. A key feature of the experimental design
is that psychological closeness can be measured parametrically
in terms of distance, just like real physical distance. The findings
showed that the right inferior parietal lobule was significantly
related to social, physical and temporal distance, suggesting
that some high level social processes co-opted neural processes
that evolved to process basic sensory information about spatial–
temporal distance (Parkinson et al., 2014).

RSA has also been used to reveal how the brain represents
the richness and complexity of social knowledge such as the
self (Chavez et al., 2017; Feng et al., 2018; Wagner et al., 2018)
and others’ mental states (Tamir et al., 2016; Thornton et al.,
2019a; Thornton et al., 2019b). For instance, Tamir and colleagues
asked subjects to rate mental state terms (e.g. awe, worry, curios-
ity, rage) on a variety of attributes such as warmth, compe-
tence, agency, experience and arousal. Their behavioral results
showed that individual mental states can be represented by
four unique dimensions (i.e. rationality, social impact, human
mind and valence). They then created a behavioral RDM for
each dimension based on the pairwise similarity of each men-
tal state projecting on that dimension. Later, they asked sub-
jects to think about each mental state term in the scanner
and derived a neural RDM for each region of the brain based
on the pairwise similarity of local neural activation patterns
associated with each mental state. By linking behavioral and
neural RDMs using searchlight RSA, they localized the neural
correlates of three dimensions (rationality, social impact and
valence) in the MPFC, precuneus, TPJ (temporoparietal junc-
tion) and ATL (Tamir et al., 2016). This study demonstrates that
RSA is a very powerful analytic technique to reveal how the brain
organizes a complex and multidimensional system like social
knowledge.

RSA can be used to investigate emotions and valence

RSA has also been used in affective neuroscience to better under-
stand the neural representation of emotions and valence (Chika-
zoe et al., 2014; Costa et al., 2014; Nummenmaa et al., 2012).
RDMs from different ROIs can be compared to see how different
brain regions represent distinct stimulus features such as the
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emotional valence of images. Chikazoe et al. (2014) found that
when mean activations were used to measure representations
in the orbitofrontal cortex, specificity of valence was not found
as the similarity of between-valence stimuli (positive vs negative
stimuli) was similar to within-valence stimuli (positive vs posi-
tive and negative vs negative). However, when the pattern of acti-
vation across the orbitofrontal cortex was used, valence could be
seen to be represented in a dimensional manner where within-
valence stimuli had greater similarity than between-valence
stimuli. This was interesting because prior meta-analyses of
data from mass-univariate fMRI studies showed that neural
activations for positive and negative valenced items tended to
overlap (Lindquist et al., 2012). Chikazoe and colleagues showed
that although mass-univariate analyses can reveal that a region
is activated for stimuli of two opposing sides of a dimension, RSA
can reveal how information of that dimension is represented
(Chikazoe et al., 2014).

RSA can be used to compare models with neural
representations

A unique feature of RSA is its ability to compare neural represen-
tations with psychological or computational models. In a recent
study, representations of observed socio-affective touch experi-
ences, such as hugging and holding hands, were compared to
representations of non-socio-affective touch experiences, such
as holding objects (Lee Masson et al., 2018). The mass-univariate
analysis from this study showed that the social vs non-social
touch contrast implicated social brain network regions such as
the TPJ and superior and middle temporal gyrus. A multiple
regression analysis was used to show that a social vs non-social
conceptual RDM could be related to neural RDMs from different
ROIs representing various networks and not just the social brain
network. The analysis revealed that social information from
touch experiences can be represented across a variety of regions
belonging to somatosensory, pain, theory of mind and visual
networks. Affective information from touch experiences, on the
other hand, was selectively represented in regions belonging to
somatosensory and theory of mind regions.

RSA can be used to compare data from different age
groups, diagnostic groups or even species

The neural representation of a category, dimension or task can
be easily compared using RSA between different individuals
(Guntupalli et al., 2016; Nguyen et al., 2019; van Baar et al., 2019)
and groups (Golarai et al., 2017; Lee et al., 2017). For instance,
one could ask: do children and adults have similar or different
neural representations for different visual categories? And in
fact, using RSA, it has been shown that category representations
of faces, scenes and objects in the ventral temporal cortex does
not differ between children, ages 7 to 11, and adults (Golarai et
al., 2017). In another study with a slightly younger age group
of five to seven-year olds, a univariate analysis showed that
category-selectivity was not present in regions that typically
encode faces, bodies and places. However, RSA was able to show
that response patterns were still similar to adults who did have
category selectivity in those same regions, suggesting that very
young children have distributed response patterns that serve as
a foundation for category-selective regions (Cohen et al., 2019).
Another study asked whether a mother’s empathy for her child is
equivalent to the child’s empathy for their mother. This question
was based on the premise that empathy, to some degree, blurs

the line between self and other, thus if one group has higher
empathy for the other group, there should be greater represen-
tational similarity. Using RSA, the results showed that mothers
had more similar neural representations for harm to self and
harm to family members than did their adolescent children (Lee
et al., 2017). When comparing common representational space
across individuals, RSA can even be employed for functional
parcellation of the cortex (Guntupalli et al., 2016).

Not only can different groups of human participants be com-
pared using RSA but also different species of animals as well. In
an early RSA study, researchers asked if object and face represen-
tations in the inferior temporal lobe are similar in macaques and
humans (Kriegeskorte et al., 2008). Humans and macaques were
shown the same images of natural and artificial objects, animate
non-human faces and body parts and human faces and body
parts while either undergoing an fMRI scan or while having the
electrical activity of neurons recorded. The dissimilarity between
the neural response to visual stimuli in human inferior temporal
cortex was compared to the dissimilarity of the neural response
to visual stimuli in macaque inferior temporal cortex. The results
showed that both species represent objects and faces in a highly
similar way in inferior temporal cortex. This example shows how
RSA can create a bridge to directly compare non-human primate
research to human research, even when the data that are being
compared are from distinct methodologies.

RSA can be used to compare data from different
techniques

As hinted at in the last section, RSA enables us to compare
neural data from different modalities. Kriegeskorte and col-
leagues (2008) not only compared different species, but they also
compared fMRI and extracellular recording data (Kriegeskorte
et al., 2008). In short, any modality (with different spatial and
temporal scales) can be used in combination together as input
in RSA, as long as the same tasks are used across studies. It can
provide a bridge between data gathered using different modal-
ities in social neuroscience (e.g. eye-tracking, electromyography
and electrocorticography). For instance, the sluggish temporal
resolution of the BOLD response can be partly overcome by
using RSA to complement fMRI with data from techniques with
excellent temporal resolution such as MEG (Cichy et al., 2017) or
EEG (electroencephalography) (Salmela et al., 2018). RSA has also
been used to compare data from MEG to EEG (Cichy and Pantazis,
2017). RSA can even be combined with diffusion imaging to
reveal the neural representation in white matter (Fang et al.,
2018). As data accumulate in social neuroscience, comparisons
across techniques will allow us to gain convergent and compli-
mentary viewpoints.

RSA can be used to make predictions about future
behavior

Since RSA can reveal how information is represented in the
brain, an interesting extrapolation is to use the current state
of an individual’s neural representations to predict the same
individual’s future behavior. This is particularly useful for per-
suasion neuroscience where the aim is to investigate how mes-
sages are firstly encoded in the brain and then influence people’s
mind and subsequent behavior. In one such experiment, study
participants who were smokers were recruited and they were
shown images that contained social or health themes related
to quitting smoking. Conceptual model RDMs were created for
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health information, social information and valence of message
content. These model RDMs were correlated with neural RDMs
to see how well an ROI represented a given type of informa-
tion. The correlations from the neural RDM and each of the
model RDMs were inputted into a regression analysis to predict
change in frequency of smoking. It was found that the more
health information was represented in the MPFC, the more likely
participants were to reduce smoking (as indexed by self-report,
∼38 days later) (Pegors et al., 2017). Future extensions of this
work could look to see if neural data predict behavior at longer
time frames, which is more relevant for public health, and also
use direct measures of smoking cessation to improve model
prediction.

RSA has also been used to predict physiological indices of
fear. Visser et al. (2013) presented participants with visual stim-
uli, such as a face or a house, and some of these were paired with
shocks. The similarity between neural responses for different
category stimuli, which were both presented with an electric
shock (and therefore had a shared feature of fear), predicted
pupil dilation similarity in a separate test given weeks after
the initial learning experiment (Visser et al., 2013). Note that
the average activation to the stimuli was not able to predict
pupil dilation, but RSA could—further highlighting RSA’s greater
sensitivity over mass-univariate analyses.

RSA limitations

Although the focus of this paper has been on highlighting the
advantages of RSA over other methods, RSA still shares some
limitations of more commonly used techniques. One limitation
of RSA is that it is still susceptible to pitfalls of any correlation-
based methods. RSA attempts to understand how information
is represented in a brain region by correlating RDMs, which
are themselves made of correlations. Although neural RDMs
may be correlated with model RDMs of a specific attribute (i.e.
high-status vs low-status), the correlations will not explain all
of the shared variances between stimuli. One solution to this
may be to direct attention during a task to specific attributes
that can tell the researcher how information is represented
(Nastase et al., 2017; Popov et al., 2018). Another solution
would be to use other non-correlation-based representational
analyses (e.g. encoding analysis, pattern component analysis,
multivariate pattern dependence, repetition suppression) to
validate RSA results in the same study (Anzellotti and Coutanche,
2018; Diedrichsen and Kriegeskorte, 2017; Hatfield et al., 2016;
Wagner et al., 2018).

A second limitation is that RSA can be heavily influenced by
outliers, in much the same way that all correlation-based anal-
yses are. As mentioned previously, a rank-based correlation can
be used to curb the influence of outliers when correlating RDMs,
and large sample size (n > 12) and rich stimuli for each condition
(>20) are needed for population inference and stimulus-label
randomization test (Nili et al., 2014).

General discussion
RSA can uniquely address questions about the neural repre-
sentation of information from features of stimuli. Because RSA
directly captures the differences between individual stimuli,
it has an advantage over mass-univariate methods and MVPA
decoding in analyzing the multidimensional features of stim-
uli. This is in addition to its greater sensitivity by accounting
for the multivariate nature of data, rather than an aggregate
response that is used in mass-univariate methods. Although

some earlier univariate techniques can also be used to study the
representation of stimulus features, such as repetition suppres-
sion (Grill-Spector et al., 2006), these techniques still suffer from
limitations that multivariate techniques do not have.

In addition, although traditional univariate encoding models
provide an alternative to RSA for testing computational models
of brain information processing (Kay et al., 2008), it first needs a
separate dataset and stimuli for model fitting. In contrast, RSA
offers an easy and simple way of comparing models, naturally
handles noise correlations between voxels and reduces the need
for a training dataset (Nili et al., 2014). When RSA incorporates
other encoding models (e.g. multiple regression RSA), it can pro-
vide a flexible and powerful quantitative means to characterize
dynamic, rather than fixed representational spaces, shaped by
bottom-up and top-down factors, thus promising better predic-
tions of social cognition and behavior (Stolier et al., 2018a).

Future implementations of RSA can be used to explore dif-
ferences in representation in clinical populations. Alterations
in the representation of a particular type of information can
be explored in clinical populations that have a clear deficit in
representations, such as semantic memory deficits in seman-
tic variant primary progressive aphasia or social knowledge
in autism spectrum disorders. A novel use of RSA seeks to
understand individual differences between subjects by having
subjects as features of RDMs and using inter-subject correlations
to see how subjects respond differently to naturalistic stimuli
(Finn et al., 2018).

In sum, RSA is an important and promising computational
technique for understanding how our brain represents the social
world. RSA is easy to use and can fully integrate the entire
repertoire of techniques used in social neuroscience including
single-unit recordings, fMRI, EEG, physiological recordings and
behavioral reactions (Figure 1). Several toolboxes exist that allow
researchers to handily use RSA, such as the RSA toolbox (Nili
et al., 2014), CosMoMVPA (Oosterhof et al., 2016), The Decoding
Toolbox (Hebart et al., 2015) and PyMVPA (Hanke et al., 2009).
Compared to MVPA decoding, the learning curve for RSA is far
lower as users do not need to understand various machine
learning algorithms that if implemented poorly can provide
ambiguous or even misleading results.

We hope that this introduction to RSA allows researchers
to see that the technique is easy to understand and imple-
ment, thus paving the way for future research using this
technique.
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